Towards an Agent Programming Language

Corrado Santoro
University of Catania
Dept. of Mathematics and Computer Science
Viale A. Doria, 6 - 95125 - Catania, Italy
santoro@dmi.unict.it

ABSTRACT

This paper is an analysis of the characteristics of software
agents and multi-agent systems aiming at deriving the ba-
sic concepts and capabilities that a “good” agent program-
ming language should have. The paper deals with this topic
from two different point of views: it analyzes agent’s prop-
erties in order to understand which language constructs and
abstractions could be worth, and then refines this analysis
by exploiting agent meta-models provided by agent-oriented
software engineering methodologies. Even if the objective is
quite ambitious, the concepts derived can be considered a
starting point for a work leading to the specification and
implementation of a mainstream agent programming lan-
guage.

Categories and Subject Descriptors
D.3 [Programming Languages]: Miscellaneous; D.2.11
[Software Architectures]: Domain-specific architectures

Keywords
Agent Programming Language, AOSE

1. INTRODUCTION

Since the introduction of the concepts of autonomous agent
and multi-agent system, researchers have tried to create proper
agent programming languages, with the aim of coding into
language statements and constructs the basic characteris-
tics of the agent programming model. On this basis, many
languages have been proposed, such as 3APL, April, Go!,
etc. [36, 37, 38] (to cite only a few of them), but currently
none of them is on the mainstream. It is the author’s opinion
that the reason behind this flaw lies on the fact that many
agent platforms have been also proposed [10], in the form
of middleware or libraries for well-know languages (mainly
Java) that aim at providing an infrastructure for agent pro-
gramming by means of proper functions and software archi-
tectures.

Undoubtedly building an agent system using a Java-based
platform makes a programmer happier to use an already
know programming language rather than to learn a new
one. But the main drawback of such solutions is that they
force the use of a certain programming paradigm—very of-
ten object-oriented and imperative—in a essentially reactive
and proactive context, in which a different programming ap-
proach could fit better. The same applies to language con-
structs: when using agent-oriented platforms, basic agent’s
characteristics are implemented by means of function calls

or class hierarchies rather than being coded into proper lan-
guage statements; this is quite similar to providing, for an
object-oriented environment, a library for the C language
that implements classes and objects with function calls and
“struct” definitions: surely constructs to define classes with
hierarchies, attributes and methods, provided by C++ are
more meaningful and better fit the OO paradigm. In the
same way, a language that provides agent-based constructs
is more appropriate than a Java platform.

Indeed, today, since agent technology is well-assessed and
mature enough, and agent platforms have reached a stable
state and are widely accepted in the community, it is worth
to summarize concepts and results of 20 years of research
and industry experience and try to propose a proper agent
programming language. Ideally, the final objective would
be something like a C or C++ or Java for the agent world:
this is quite ambitious but if researchers would agree on the
basics of the language, working together to formalize the
language and providing a proper development environment,
this ambitious goal can be reached.

In this context, on the basis of the author’s experience in
agent platforms [20, 21, 23, 22, 24, 25] and agent-based ap-
plication design [17, 18, 19, 6, 7, 8, 34, 5], this paper is
an attempt to analyze the main concepts of the agent pro-
gramming paradigm in order to derive the basics of a “good”
agent programming language.

The paper starts (Section 2) by discussing agent’s peculiar
properties, deriving their direct implications in the state-
ments and programming model of an agent language. Then
in Section 3 some issues related to software engineering as-
pects are dealt with, in order to understand how to map the
basic building blocks of an agent application into an agent
language. The results of the analysis made in the previous
Sections are finally summarized in Section 4, while Section 5
provides an overview of related work. Section 6 concludes
the paper.

2. SOME CLAIMSABOUT AGENTS

2.1 Agentsareonly Reactive

The first comment arising after reading the title of this sub-
section is that “reactive agents are only a certain kind of
agents, but there are also rational agents, BDI or plan-based
agents, etc., etc., etc.”. The claim in the title seems thus
wrong, but only apparently!



Indeed, (purely-)reactive agents are those in which actions
(computations) are triggered only by external events (i.e. en-
vironment sensing). On the other hand, in rational agents,
actions derive from a certain form of reasoning, based on
environment sensing as well, and also on the agent’s knowl-
edge/mental state. Given this, we can argue that an agent
action is always triggered by an event: it could be a change
of the state of the environment, an incoming message, a new
knowledge derived by the agent itself, the result of a reason-
ing process, an expired timer, etc., but it is an event in any
case.

From the perspective of a programming language, such a
claim means that the language itself must possess proper
constructs to specify events and event handling. Since events
may be different in nature, the concept of event itself must
be general (or abstract) enough.

It should be noted that constructs for event handling can
be also used to perform reasoning. Indeed, the majority of
reasoning engines [2, 1, 3] are substantially based on rule
production systems, which in turn implement the RETE or
a similar algorithm [27, 28, 26]. Such systems are able to
derive new knowledge (or execute an action) starting from a
certain configuration of their knowledge base and according
to rules of the type “if I know something then these some
other things are true” or “if something is true, then I do
these actions”. As the reader can understand, these situa-
tions can be as well expressed using the event-action model
stated above: the latter can be thus considered as the ba-
sic building block not only to specify simple reactions, but
also to implement language libraries supporting more or less
complex reasoning processes.

Surely, the possibility of specifying rules to react to knowl-
edge events does not require to have a reasoning system em-
bedded in the language runtime environment. A preferable
feature of the language would be reflection and introspection,
in order to allow the implementation of proper libraries that,
by performing the analysis of rules written in a program, can
provide suitable reasoning capabilities.

2.2 Agentsdo Concurrent Tasks

No one has doubts that, to achieve its objective, an agent
has to perform a proper series of tasks whose execution is
triggered by events. And since two or more events may
occur simultaneously, two or more tasks can be triggered
together and thus execute concurrently. This can be consid-
ered a basic behaviour: really, tasks could be composed in
a preceding-successor execution graph, and thus needing a
sequential execution, while, in other cases, a parallel execu-
tion is preferable; in some other cases, a mix of sequential
and parallel execution is required. Agent’s behaviour can
be thus modeled as a collection of finite-state machines, as
in the Harel’s statechart model [35], one of the abstractions
that best fits the autonomous nature of agents.

As for concurrency, since it can be considered an intrinsic
property of agents, a proper agent programming language
must address this aspect. The natural consequences of a
natively-concurrent language are the problems related to
concurrency control and race conditions. Indeed, in a non-
agent environment, concurrency is something which is often

chosen by the programmer, who, being aware that certain
pieces of code could run in parallel and some pieces of data
could be accessed concurrently, inserts in the code appro-
priate constructs or function calls to avoid race conditions
and inconsistency. This is the case of C/C++ with pthreads,
mutexes and condition variables, or Java with Threads, syn-
chronized constructs and wait/notify calls. As it is widely
known, the matter is that a wrong concurrency control pat-
tern would cause unexpected program behaviours, such as
deadlocks, dirty reading, data inconsistencies, and other un-
desired side-effects.

On the other hand, if a language is intrinsically concur-
rent the programmer has not to choose anything! And since
concurrency is a “natural” language behaviour also concur-
rency control should not be demanded to the programmer
but “naturally” handled by the language runtime itself. But
such a characteristic does not have to imply the presence of
constructs to protect variables or pieces of code (i.e. some-
thing like the Java “synchronized” keyword which is indeed
a high-level construct for a mutex): no special constructs
should be needed, concurrency control should be transpar-
ent for the programmer since it is managed by the runtime
behind the scenes.

2.3 Agentsarenot Objects

A common misconception about agents is that they are often
considered a sort of active objects, or in other words objects
with their own thread of control. Surely we do not find
such a statement in the agent definition reported in books or
research papers, but often in informal discussions and, above
all, talking with people belonging to the OO community, this
phrase or similar soon or later come out'. However, in the
author’s opinion, this is the best way to impede a proper
affirmation of agent technologies. And in this sense, the
fact that many agent platforms are based on OO languages
and runtimes (such as Java or C#) does not help the agent
cause.

An agent is not an object. An object has been initially
proposed as an abstraction to model a real thing and thus
is perfect to represent things of a certain environment in
a computer system. An agent instead is an active entity
embedding the (reactive/proactive) computations of an au-
tonomous computer system. Conceptually, objects are per-
fect to represent data, agents can be instead considered as
the programs using those data. Agents, like objects, of
course have a state, but the concept of method, containing
code invoked from outside the object (meaning that basi-
cally an object is a passive entity), does not fit well the
autonomous nature of agents.

In an agent programming language perspective, objects could
be very useful to model agent’s data or ontologies (see Sub-
section 2.4 below), but agents have definitively not to be
treated as objects. A natural question here is how to model
and where to place agent’s code: we will deal with the com-
plete answer in Section 3, here we only say that we consider
an agent as a collection of tasks and a task as a collection of
reactive actions; code is placed in tasks (or actions) which
are then bound to agent(s) at runtime.

'Here the author is talking of personal experience.



2.4 Agentsuse Ontologies

The knowledge of rational agents is often expressed by mod-
eling the universe in which they live with a proper ontology.
FIPA [33] documents and standards make ontology a key
aspect of intelligent agents, therefore any programming lan-
guage for agents cannot ignore it but instead should provide
appropriate native constructs for its definition.

Agent platforms like JADE map things and concepts of an
ontology into Java classes. While conceptually a thing is an
object, the sole inheritance, composition and aggregation
relationships, provided by a classical OO environment like
Java, are not enough to model the complexity of a medium-
sized ontology. Indeed ontology definition languages like
OWL or RDF supports different kind of relationships be-
tween entities, as well as providing other types of constructs,
such as cardinality or constraint definition.

Similar features should be provided by an agent program-
ming language by means of proper native statements and
possibly by means of the same statements used for type
and data definition, thus avoiding the need for language
workarounds or external languages, as it happens in some
of the currently available platforms [39, 4].

2.5 Agentsare Social

The basic characteristic of a multi-agent system is the ability
of agents to interact through the exchange of proper mes-
sages. According to FIPA standard, messages should be
“well formed” and carried through ACL speech acts [30]; at
the receiver’s side, message reception can activate a com-
putation or, by exploiting the semantics of the speech act,
trigger a proper reasoning process. If the language provides
reaction constructs as proposed in Sect. 2.1, message han-
dling as specified above can be easily supported.

As for the sender’s side, the presence of native statements
to specify speech acts should be a natural feature of the
language; moreover, according to Sect. 2.4, since ontology
definition is part of data type definition, message content
can be specified directly by means of an expression or a
variable, which will be processed and sent by the language
runtime environment.

By combining reaction to incoming messages, ontology defi-
nition and handling, and reasoning capability (provided ac-
cording to Section 2.1), support for FIPA-ACL semantics
can be made possible. Language libraries can be provided,
implementing the reasoning process which, triggered by the
arrival of an ACL message, and in accordance with the car-
ried speech act, properly updates the mental state of the
agent (see Section 3.2).

But messaging based on speech acts and semantics should
not be the sole interaction feature of an agent programming
language. Indeed, as it is widely known, using the overall
FIPA messaging architecture (encapsulation of messages in
speech acts, speech act encoding in SLO or XML [29, 32],
envelope creation, HT'TP-based transport protocol) implies
a very high overhead in terms of time required to perform
the various protocol steps and bandwidth wasted due to ad-
ditional data that has to be transferred. For this reason, we
can reasonably consider standard FIPA messaging needed

only in the case of open multi-agent applications, i.e. appli-
cation that requires or foresees interaction with other exter-
nal computer systems. In this case, interoperability implies
a mandatory support of standard FIPA messaging. But in
some other cases, agents of a MAS interact only to one an-
other, and often without requiring speech acts or ontology
support. In such cases, bare messaging is enough, if sup-
ported by simple encoding and transport protocols faster
and more effective than XML + HTTP.

From the language and runtime environment point of view,
such a discussion has some implications. The language has
to possess proper commands to send messages using ACL
speech acts (e.g. by means of “inform”, “query-if”, etc.,
language built-in statements) and also for simple messaging,
through a e.g. “send” statement. On the other hand, the
use of the FIPA-compliant messaging stack should not be
mandatory, but the language environment should make it
possible and easy to plug-in other encodings or transport
protocols.

Social behaviour is however not only message passing, even
if semantically enriched. As reported in FIPA specification,
conversation protocols are another key aspect of agent inter-
action, which, according to what it has been said before, can
be supported by combining messaging with task-/statechart-
based reactive behaviour programming. The important fea-
ture to take into account in thinking how to provide con-
versations in an agent language is that of reuse: since FIPA
protocols are standardized conversational patterns, it is nat-
ural to think to reuse in different contexts a piece of soft-
ware implementing e.g. contract-net [31]%, provided that it is
enough generalized and that the language possesses suitable
constructs for generalization/specialization.

2.6 Summary

Before concluding this Section, it is worth to summarize all
the concepts derived here in order to have a schematic view
of the features that an agent programming language should
have. To this aim, the table in Figure 1 reports in the left
column agent’s characteristics and in the right column the
relevant language features.

3. AGENT MODEL AND SOFTWARE EN-
GINEERING

The basics and characteristics of a “good” agent program-
ming language should not come only from an analysis of
agent’s features; indeed the language building blocks should
also take into account how agents and agent-based applica-
tions are treated and modeled from the software engineering
point of view.

In the context of agent-oriented software engineering (AOSE),
differently than what happened for agent programming lan-

guages, researchers have produced a very large number of

papers and proposals. And also the Agentlink-I1T European

Coordination Action® has a specific Technical Forum Group

(TFP) on AOSE.

?Indeed, we can also think to non-FIPA protocols that can
be reused.

Shttp://www.agentlink.org



Characteristic

Language and runtime feature

Reactivity Events

Proactivity Event-condition-action paradigm
Reasoning Introspection

Task model Statechart-based approach
Concurrency Concurrency-based execution model

Safe (concurrent) execution environment

Agent model

Agent as a set of (concurrent) tasks
Agent featured by a (mental) state

Ontology handling

Ontology specification constructs in data and type definition

Social behaviour

Support for ACL-based messaging through native statements for speech act handling
Support for non-ACL messaging

Easy plugging of encoding and transport protocols

Conversations handled through reactive programming model

Figure 1: Summary of Agent’s Characteristics leading to language and runtime features

Conversation —D Communication

CognitiveAgent >Agent R o Task
? 0..n
Role
0..n
Representation — Environment é_‘

Organization

Figure 2: AgentLink TGF Agent Metamodel

AOSE methodologies like Gaia [43], PASSI [15], ADELFE [11],

Tropos [12], etc. (to cite only a few of them) have been
studied, compared and applied in many real-case scenarios.
And since such methodologies define proper agent/applica-
tion meta-models, a good study on agent programming lan-
guages cannot ignore them but has instead to try to incor-
porate their concepts in such a way as to minimize the gap
between design and implementation.

AOSE methodologies are quite similar to one another, even
if they differ in some specific aspects as reported in [13]; and
thanks to such similarities, the AOSE AgentLink-IIT TGF
(AOSE-AL3TGEF) issued a unified reference metamodel which
is reported in Figure 2 and that can be used as a starting
point of our analysis. In doing so, it should be noted that the
discussion could lead to derive again some of the language
feature already derived in Section 2; this is not a repeti-
tion but, instead, a clear demonstration of the validity of
them, since they are supported by both a “not so formal”
analysis of agent’s characteristics and a proper review of a
well-formed software engineering models.

3.1 Tasksand Rules

The first aspect which comes out from the observation of
Figure 2 is the link between Agent and Task entities. It
proves that, as argued in Section 2.3, from the computa-
tional point of view, an agent is a collection of tasks that
the agent performs during its lifetime; therefore, the pro-

gram code driving agent’s behaviour is defined into agent’s
tasks.

But the many-to-many link stresses another aspect: the
same task can be indeed assigned to different agents. In
order to make this possible in a programming language, the
language itself has to incorporate the concept of Task as a
native entity, providing suitable constructs for its definition;
moreover, the language has to feature proper primitives or
constructs for assigning, at design- or run-time, the same
Task to one or more agents®.

Allowing the same Task entity to be bound to different
agents favours code reuse, since a Task can implement a
certain activity (or activity pattern) which can be useful in
different agent contexts and applications. But code reuse
becomes more effective if the language is able to support
concepts like generalization/specialization. As it is widely
known, in a programming language this objective can be
achieved either (i) by introducing proper parameters, as-
signed during instantiation and whose values can change
code behaviour according to designer requirements, or (ii)
by means of classical object-based concepts like inheritance.

A natural question arises: what are the abstractions and
constructs that we could use to program agent’s behaviour
in Tasks? The answer comes from the analysis provided in
Section 2: since the agent is a reactive entity, the basic code
construct of a Task should be a reaction rule of the form
event-condition-action (ECA); here, the event is something
that happens in the world where the agent bound to the Task
lives, the condition is a predicate related to the event or the
knowledge (state) of the agent bound to the Task, and the
action contains the piece of code executing the computation
triggered by the couple event-condition.

By making an analogy between the object and agent world,
while an object can be seen as a collection of methods and at-
tributes, a Task can be modeled as a collection of ECA rules
(and also Task local variables, i.e. attributes) whose overall
composition is able to map the statechart-based model typ-
ical of agent’s behaviour. In order to support this composi-

4Since a Task is an active entity, the fact that a Task can be
assigned to more agents really means that different instances
of the same Task are bound each to a different agent.



tion, a mechanism is mandatory to synchronize the execu-
tion of the various tasks bound to an agent: indeed, since
(according to Section 2.2) tasks are isolated entities, suitable
inter-task communication constructs are needed (for syn-
chronization), as well as start/stop/suspend/resume state-
ments.

The concept of inheritance introduced before can be applied
also to a Task, meaning that a ECA rule could be overrid-
den not only in terms of implemented code (as in an object’s
method), but also in terms of bound event(s) and associated
conditions. These aspects, if implemented in an agent pro-
gramming language, would be typically “agent-oriented” fea-
tures; they would be able to make a strong point in favour
of agent programming, since they would clearly show the
agent-based nature of the language.

3.2 Agent, Mental State and Environment
Given the discussion above, it is quite clear that an agent
programming language should provide a “task” structured
construct which contains the relevant reactive rules. The
choice of supporting inheritance or parametrized instantia-
tion is a matter of the overall paradigm chosen for the lan-
guage and it is a detail that can be dealt with in a second
phase. Instead, a natural question now is whether an “agent”
construct should be present or not; and, in the former case,
what such a construct should define and contain.

If such a construct would be present, surely we can say that
it does not have to contain task definitions, other-
wise the agent-to-task binding would be static; this is not in
accordance with the metamodel which specifies a many-to-
many link between Agent and Task. From the source code
point of view, agent and task definitions should be clearly
separated, and a suitable “bind” construct has to be used in
the definition of an agent to associate proper task instances
to it. Similarly, a “bind” statement (or primitive function)
should be present, for dynamic agent/task binding also at
runtime.

The second aspect related to a possible agent definition con-
struct is the representation and handling of agent’s (mental)
state and agent’s knowledge. This is strongly tied to the rep-
resentation of the environment in which the agent lives and
thus to the link between the Agent and Environment enti-
ties in Figure 2; the Figure show that this link is direct for
“dummy” agents® but mediated through a Representation
entity if the agent is “cognitive”.

This distinction between dummy and cognitive agents ap-
pears in the AOSE-AL3TGF metamodel, while it is not so
explicit in other AOSE methodologies. It should be noted
that, by definition, an agent lives in an environment so it
must have a certain representation of it, independently of
its more or less “intelligent” nature or behaviour; for this
reason, the distinction in Figure 2 appears quite strange. In
the author’s opinion, if a dummy/cognitive agent distinc-
tion is required, it should be based on the way in which
the environment is represented: a cognitive agent, since it
should be capable of certain forms of reasoning, should have

®We use here the term “dummy” to distinguish a not-so-
intelligent from a rational/cognitive one.

a quite rational representation of the environment, provided
by an adequately complete ontology. On the other hand,
a “dummy” agent should have only some constructs/types
able to provide a basic representation of its reference envi-
ronment. Such a distinction should be provided by a proper
agent programming language in order to allow a program-
mer to use, in the latter case simple constructs and type
definitions, while providing suitable ontology-/object-based
statements, as highlighted in Section 2.4, in the case of “more
intelligent” agents.

Supposing that we have the proper constructs for knowl-
edge/environment definition, the question now is how to
manage such a knowledge in agents and related tasks. A
natural way could be to have suitable attributes or prop-
erties in agent definition to store data obtained from the
environment or derived by means of a certain form of rea-
soning, but this could not be exhaustive. Indeed, to have
agent’s knowledge only stored in the attributes defined at
design time implies to know in advance, from the program-
mer’s point of view, what the agent will know during its
lifetime. Sometimes this is not true, above all in rational
agents where new knowledge (not foreseen at design time)
can be derived as the outcome of a reasoning process.

According to this, and taking as a reference the techniques
already used in programming expert and knowledge-based
systems, a better way (in the author’s opinion) is to orga-
nize agent’s knowledge in a classical knowledge base (KB),
associated to the agent and storing a set of facts repre-
sented by proper language terms (e.g. proper objects, if an
ontology-based representation is used). On this basis, task
rules can also be triggered by the presence of certain facts
in the agent’s KB, thus allowing a designer to activate a
computation on the basis of a specific knowledge, or also
implement a real reasoner, provided that the language pos-
sesses proper primitive for KB query and manipulation by
means of asserting and retracting facts.

3.3 Rolesand Organizations

Another important aspect of agent-based programming which
emerges from the metamodel of Figure 2 is the possibility
of modeling agent organizations via roles. A Role is a well-
know concept in AOSE and refers to a peculiar behaviour or
responsibility or commitment that one or more agents could
have/fulfill in a certain agent-based application. Roles are
related to each other, thus forming together an Organiza-
tion; as Figure 2 shows, the behaviour of a Role can be
expressed in terms of Tasks.

At first sight, given the many-to-many link between Task
and Role entities, the same concepts derived in Section 3.2
for agent/task relationship could also be used for Roles. And
while this could suggest the presence of a proper language
construct to define roles, we can instead argue that task defi-
nition is indeed enough. In fact, a role implements a specific
behaviour, and behaviours, according to our analysis above,
are implemented by means of a task or a proper composition
of tasks (thus resulting in a statechart). Therefore, allow-
ing an agent to play a certain role implies to simply bind
the task(s) representing role’s behaviour to the agent itself.
Moreover, if abstract or generalized roles are needed, it is
still possible to exploit task parametrization or inheritance,



as described in Section 3.1.

3.4 Messaging and Interactions

The remaining part of the metamodel that needs to be ana-
lyzed is related to interaction, a feature represented in Fig-
ure 2 by Communication and Conversation entities. Such
entities model a dialogue between two or more agents, based,
in the AOSE-AL3TGEF’s intention, on FIPA-ACL speech
acts. Supporting such an interaction model requires appro-
priate features in the language, mainly related to the pos-
sibility of (i) sending/receiving message and (i) handling
also complex conversations®.

As for the former characteristic, we already discussed in Sec-
tion 2.5 how to support, in the language, social abilities
of agents, highlighting that not only proper statements for
ACL messaging should be provided, but also simpler forms
of messaging based on sending/receiving non-ACL data, so
that the programmer can choose the more appropriate model
for the application to be implemented.

On the other hand, a conversation can be easily represented
by a finite-state machine and thus modeled with a task, in
which message arrivals are the events triggering actions and
the change of state. Rule-based tasks can also serve for
the implementation of interaction protocols; once again, the
possibility of parametrization or inheritance allows a pro-
grammer to design interaction patterns (also abstract) that
can be reused (or concretized) in several agent-based appli-
cation contexts.

4. THEEIGHT POINTSOF THE LANGUAGE

Before concluding the paper, it is worth to summarize the
results of our analysis into eight points expressing what—
according to the author’s point of view—an agent program-
ming language should provide:

1. The language has to support data definition by types
and type definition by means of object-based constructs;
they are also used to natively define ontologies, there-
fore, in addition to classical OO concepts, the language
has to support ontology specific constructs, such as
constraints, relationships, etc.

2. Constructs for defining agents, if present, must only
allow a programmer to bind to the agent a specific
behaviour, expressed in terms of tasks (see below).

3. The state of the environment and the agent’s (mental)
state are represented by means of a knowledge base,
bound to each agent instance, which can be manipu-
lated and queried, in bound tasks, through appropriate
language constructs.

4. Agent’s behaviour is modeled using statecharts which
are collections of interacting finite-state machines. Each
finite-state machine is implemented by means of the
task language construct. A task is therefore a reactive
entity composed of a set of rules, each one specifying

SHereafter we use the term “conversation” in a broader and
general sense, and not strictly related to the meaning of
Conversation entity of Figure 2.

the event(s) triggering the rule itself, a condition ex-
pressing a guard on the activation of the rule, and the
action, that is the piece of program to be executed
following the triggering rule. Events can be of various
types, i.e. timeouts, ACL message reception, inter-task
message reception, fact assertion or retraction in the
bound agent’s knowledge base, etc.

5. Tasks of an agent can run concurrently and are iso-
lated, meaning that data and variables are always task
local and no data can be shared among different tasks.
Tasks bound to the same agent can interact by ex-
ploiting the knowledge base of the bound agent or by
a simple form of messaging between tasks.

6. In order to allow reuse, task specification can either
contain suitable parameters or use object-oriented con-
cepts and, in particular, inheritance. In the latter
case, it should be possible to extend an existing task
and override one or more rules, in terms of triggering
event(s), conditions and action code.

7. Proper language constructs must allow agents (by means
of the code placed in the tasks) to send and receive
messages. Such messages can be proper FIPA-ACL
speech acts—in order to implement standard interac-
tions in open agent systems—or simple language terms—
in order to avoid encoding and protocol overhead, when
not needed.

8. Language must possess proper reflection and introspec-
tion capabilities, in order to allow the implementation
of libraries for high-level reasoning, in terms of rule-
based expert systems.

5. RELATED WORK

Since the birth af agents, many researchers studied the prob-
lem of agent programming using a specific language and
some agent programming language have been proposed, how-
ever none of them has got the mainstream.

Two languages that support many concepts derived in this
paper, even if with different constructs, are April [37] and
Go! [38]. The former is a concurrent symbolic language
whose programming model is based on concurrent processes
that interact by exchanging messages; suitable matching
constructs allows filtering of incoming messages according
to a given pattern. Go! extends April’s features by includ-
ing logic programming and thus providing suitable construct
for Prolog-like predicates and goals. Moreover, Go! sup-
ports object hierarchy in the definition of knowledge base
elements. Even if April/Go! provide some of the features
highlighted in our analysis, they lack of many others (ACL
messaging, task-based model, task specialization, etc.) and,
above all, they use of a mixture of programming approaches—
imperative and logic—which force the programmer to con-
tinuously change her/his point of view during system design.

A different approach is instead the basis of languages such
as PLACA [42], Agent0 [41], AgentK [16] and 3APL [36].
They are strongly based on the BDI model [40] and some of
them include also the support for ACL messaging. But due
to their characteristics, their main drawback is that they



are suitable only for BDI logic agents, making hard to im-
plement other types of agent architectures (e.g. purely reac-
tive).

BDI agents are also the base of JACK [4] and APL [14],
which, rather than being new languages, extend Java to sup-
port plan, belief and goal definition and processing. How-
ever, the fact that the approach is Java-based cannot help
the agent cause, since, as argued in Section 1 and Section 2.3,
being the agent represented by an object/class, agent’s pecu-
liarities do not emerge and the agent model remains hidden
by the object abstraction. Rather than being agent pro-
gramming languages, they are an extension for an object-
oriented environment to support agent-like features.

A language which is not agent-oriented but uses agent-like
programming is Erlang [9], a functional, symbolic and con-
current language where the model is based on a set of con-
current processes that interact by exchanging messages7; an
interesting feature is that processes can interact either lo-
cally or remotely, and this does not affect the language con-
structs for message sending and receiving.

Due to such similarities between Erlang and the agent world,
some authors tried to exploit its features and implement an
Erlang-based FIPA-compliant agent platform, called eXAT [20,
22, 21, 23, 24, 25]. Basically, eXAT supports all the con-
cepts derived in this paper, i.e. allows agent programming
by means of rule-based task composition, provides task in-
heritance, supports agent reasoning through a knowledge-
based expert system, etc. The drawback is that all of these
functionalities, rather than being language native, are pro-
vided by means of proper libraries that interpret standard
language functions as rules and language modules as tasks.
Task inheritance is also supported, but its syntax and work-
ing model is quite weird and not so effective. However, in
any case, the study work performed in eXAT development
can effectively serve as a basis for an agent programming
language.

6. CONCLUSIONS

Undoubtedly designing a “true” agent programming language
that is able to reach the mainstream is a really ambitious ob-
jective. But now that agent technology is quite well assessed
and agent’s characteristics are well fixed, it could become
easier, for the agent research community, to concentrate on
language construct, syntax and semantics and provide a suit-
able proposal. It should be quite clear that, in doing this,
we should have to avoid “religious dogmas” such as think-
ing that C/C++ or Java are the solution for any domain,
including agent-oriented computing; instead, a joint work
based on stressing agent characteristics and agent-oriented
software engineering concepts can surely help us to reach
this goal, thus giving agent technology the role it merits in
the computer science scenario.

7. REFERENCES
[1] http://herzberg.ca.sandia.gov/jess/. JESS Web
Site, 2003.

"In this sense, April borrowed many ideas and features from
Erlang.

[2] http://www.ghg.net/clips/CLIPS.html. CLIPS Web
Site, 2003.

[3] http://www.drools.org. Drools Home Page, 2004.

[4] http://www.agent-software.com, 2004.

[5] A. Di Stefano, C. Santoro. A3M: an Agent
Architecture for Automated Manufacturing. Software:
Practice & Experience, 2008.

[6] A. Di Stefano, G. Pappalardo, C. Santoro,

E. Tramontana. A Multi-Agent Reflective
Architecture for User Assistance and its Application
to E-Commerce. In In Proc. of Cooperative
Information Agents (CIA 2002), LNAI Madrid,
Spain, 18-20 Sept. 2002. Springer.

[7] A. Di Stefano, G. Pappalardo, C. Santoro,

E. Tramontana. SHARK, A Multi-Agent System to
Support Document Sharing and Promote
Collaboration. In 2004 International IEEE Workshop
on Hot Topics in Peer-to-Peer Systems (HOT-P2P
2004 ), Volendam, The Netherlands, Oct. 2004. IEEE
Publisher.

[8] A. Di Stefano, G. Pappalardo, C. Santoro,

E. Tramontana. A Framework for the Design and
Automated Implementation of Communication
Aspects in Multi-agent Systems. Journal on Network,
Communication and Applications, 2007.

[9] J. L. Armstrong, M. C. Williams, C. Wikstrom, and
S. C. Virding. Concurrent Programming in Erlang,
2nd Edition. Prentice-Hall, 1995.

[10] F. Bellifemine, A. Poggi, and G. Rimassa. Developing
multi-agent systems with a FIPA-compliant agent
framework. Software: Practice and Experience,
31(2):103-128, 2001.

[11] C. Bernon, V. Camps, M.-P. Gleizes, and G. Picard.
Tools for Self-Organizing Applications Engineering. In
Engineering Self-Organising Systems, Nature-Inspired
Approaches to Software Engineering, volume LNAI
2977, pages 283—-298. Springer Verlag, 2004.

[12] P. Bresciani, P. Giorgini, F. Giunchiglia,

J. Mylopoulos, and A. Perini. TROPOS: An
Agent-Oriented Software Development Methodology.
Journal of Autonomous Agents and Multi-Agent
Systems, 8(3):203-236, 2004.

[13] C. Bernon, M. Cossentino, J. Pavon. Agent Oriented
Software Engineering. Knowledge Engineering Review,
20(2):99-116, June 2005.

[14] J. Chang-Hyun and K. M. Geroge. Agent-based
Programming Language: APL. In 2002 ACM
Symposium on Applied Computing, Madrid, Spain,
2002.

[15] M. Cossentino. From Requirements to Code with the
PASSI Methodology. In B. Henderson-Sellers and P.
Giorgini, editor, Agent-Oriented Methodologies, pages
79-106, 2005.

[16] W. H. E. Davies and P. Edwards. Agent-K: an
Integration of AOP and KQML. In Y. Labrou and
T. Finin, editors, CIKM’94 Workshop on Intelligent
Information Agents, Anaheim, CA, 1994.

[17] A. Di Stefano, L. Lo Bello, and C. Santoro. A
Distributed Heterogeneous Database System based on
Mobile Agents. In Workshop on Enabling
Technologies: Infrastructures for Collaborative
Enterprises (WETICE ’98), June 17-19 1998.



(18]

(19]

20]

(21]

(22]

37]

A. Di Stefano and C. Santoro. NETCHASER: Agent
Support for Personal Mobility. IEEE Internet
Computing, 4(2), March/April 2000.

A. Di Stefano and C. Santoro. The Coordination
Infrastructure of the ARCA framework. In 4" Intl.
Conference on Autonomous Agents. Barcelona, Spain,
June 3-7 2000.

A. Di Stefano and C. Santoro. eXAT: an Experimental
Tool for Programming Multi-Agent Systems in Erlang.
In Proc. of WOA 2003, Villasimius, CA, Italy, 10-11
Sept. 2003.

A. Di Stefano and C. Santoro. Designing Collaborative
Agents with eXAT. In ACEC 2004 Workshop at
WETICE 2004, Modena, Italy, 14-16 June 2004.

A. Di Stefano and C. Santoro. On the use of Erlang as
a Promising Language to Develop Agent Systems. In
Proc. of WOA 2004, Torino,, Italy, 29-30 Nov. 2004.
A. Di Stefano and C. Santoro. eXAT: A Platform to
Develop Erlang Agents. In Agent Ezhibition Workshop
at Net.ObjectDays 2004, Erfurt, Germany, 27-30 Sept.
2004.

A. Di Stefano and C. Santoro. Supporting Agent
Development in Erlang through the eXAT Platform. In
Software Agent-Based Applications, Platforms and
Development Kits. Whitestein Technologies, 2005.

A. Di Stefano and C. Santoro. Using the Erlang
Language for Multi-Agent Systems Implementation. In
In Proc. of 2005 IEE/WIC/ACM Intl. Conference on
Intelligent Agent Technology (IAT 2005), Compiégne,
France, 19-22 Sept. 2005.

C. Forgy. OPS5 Users Manual. Technical Report
CMU-CS-81-135, Dept. of Computer Science,
Carnegie-Mellon Univ., 1981.

C. Forgy. Rete: a fast algorithm for the many
pattern/many object pattern match problem.
Artificial Intelligence, pages 17-37, 1982.

C. Forgy. The OPS Languages: An Historical
Overview. PC Al Sept. 1995.

Foundation for Intelligent Physical Agents. FIPA ACL
Message Representation in String Specification—No.
SC000701, 2002.

Foundation for Intelligent Physical Agents. FIPA
Communicative Act Library Specification—No.
SC00037J, 2002.

Foundation for Intelligent Physical Agents. FIPA
Contract Net Interaction Protocol Specification—No.
SC00029H, 2002.

Foundation for Intelligent Physical Agents. FIPA SL
Content Language Specification—No. SC00008I, 2002.
Foundation for Intelligent Physical Agents.
http://www.fipa.org, 2002.

G. Novelli, G. Pappalardo, C. Santoro,

E. Tramontana. Transcoding Agents for Multimedia
Content Delivery in a Grid. International Transactions
on Systems Science and Applications, 2(4), 2006.

D. Harel. Statecharts: a visual formalism for complex
systems. Sci. Comput. Program, 8:231-274, 1987.

K. Hindriks, F. de Boer, W. van der Hoek, and J.-J.
Meyer. Agent programming in 3APL. Autonomous
Agents and Multi-Agent Systems, 2(4):357-401, 1999.
F. McCabe and K. Clark. April: Agent Process

(41]

42]

Interaction Language. In N. Jennings and M.
Wooldridge, editor, Intelligent Agents. Springer, LNCS
890, 1995.

F. McCabe and K. Clark. Go! - A Multi-Paradigm
Programming Language for Implementing
Multi-Threaded Agents. Annals of Mathematics and
Artificial Intelligence, 41(2-4):171-206, August 2004.
A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex:
Implementing a BDI-Infrastructure for JADE Agents.
Telecom Italia Journal: EXP - In Search of
Innovation (Special Issue on JADE), 3(3), Sept. 2003.
A. S. Rao and M. P. Georgeff. Modeling Rational
Agents within a BDI-Architecture. In R. F. J. Allen
and E. Sandewall, editors, 2" International
Conference on Principles of Knowledge Representation
and Reasoning (KR’91). Morgan Kauffman, 1991.

Y. Shoham. AGENT-0: A Simple Agent Language
and its Interpreter. In 9" National Conference of
Artificial Intelligence, Anaheim, CA, 1991. MIT Press.
S. R. Thomas. The PLACA Agent Programing
Language. In N. Jennings and M. Wooldridge, editor,
Intelligent Agents. Springer, LNCS 890, 1995.

M. Wooldridge, N. Jennings, and D. Kinny. The Gaia
Methodology for Agent-Oriented Analysis and Design.
Journal of Autonomous Agents and Multi-Agent
Systems, 3(3), 2000.



