The future of AOSE: exploiting SME for a hew conception
of methodologies

Mariachiara Puviani, Giacomo Cabri, Letizia Leonardi
Universita degli Studi di Modena e Reggio Emilia
Via Vignolese 905, 41125 Modena, ltaly
{mariachiara.puviani, giacomo.cabri, letizia.leonardi}@unimore.it

ABSTRACT

In the last years, the software engineering field has pro-
vided developers with different methodologies to support
their work. Nevertheless, existing methodologies can hardly
meet the requirements of all existing scenarios, which are
more and more complex and highly differentiated. This
problem can be faced by applying the Situational Method
Engineering (SME) approach, which enables to build appro-
priate methodologies by composing “fragments” of existing
ones. We envision this approach as the future of software
engineering in general, and in particular if applied in Agent
Oriented Software Engineering (AOSE). This approach has
also the valuable advantage of reusing models, solutions, ex-
periences and tools of existing and tested methodologies.

In this paper we report three examples of application of
the Situational Method Engineering approach in AOSE. We
show that this approach can be applied following different di-
rections, and in particular: entity-driven, metamodel-driven,
and characteristic-driven. To concretely show these direc-
tions, we present three examples of methodologies for devel-
oping agent systems (one regarding self-organising systems),
all constructed composing methodology fragments to meet
the scenario requirements.

Keywords
SME, methodology, fragments, AOSE.

1. INTRODUCTION

Nowadays software engineering provides a lot of methodolo-
gies that help developers pass from models to implementa-
tions when building a wide range of software systems. Differ-
ent scenarios can have different requirements at the domain
level, which are more general than the ones at the appli-
cation-level, and methodologies can suit such requirements
with different degrees. When a developer needs a method-
ology to build her system, she has to choose among the dif-
ferent approaches in general and the different methodologies
in particular. Usually a developer chooses the methodology
she better knows and she has experience of, or a methodol-
ogy that is particularly focused on the kind of system she
would like to build. Others prefer to use methodologies that
have strict connections with the implementation phase (i.e.,
with infrastructures), or that have a supporting tool that
will guide the developer during all the process, from the de-
sign to the implementation of the system. Actually, different
methodologies have no supporting tool, or are not strictly
connected to infrastructures. In addition, a lot of them are

suited for specific classes of problems and it is still very hard
to cover all the range of possible scenarios. Even a deep de-
veloper’s experience in one methodology cannot help if this
methodology is not suitable for the scenario the developer
must face.

To solve this problem, the developer can decide to create a
new brand methodology for facing the requirements of the
specific scenario, but this approach requires a lot of expe-
rience from the developer herself and, due to the bounded
knowledge of a person, the result can be worse compared to
the use of some existing methodologies, also if they are not
created for the specific kind of faced problems.

The approach we exploit in this paper is called Situational
Method Engineering (SME) ([25] and [22]) and it aims at
not starting from scratch every time a developer has to face
a specific scenario in building a new system. Instead, it
supports the reuse of existing experiences and, at the same
time, it enables to customize a specific methodology, on
the base of specific needs. To do that, we will compose
a new methodology exploiting fragments [7] (pieces of pro-
cess) coming from existing methodologies and creating the
missing fragments ad hoc to complete the new process. This
is an approach already known in the software engineering
field, even if not very spread yet due to its complexity. In
this paper we present three different examples of application
of this approach in the context of Agent Oriented Software
Engineering (AOSE) [24]. The presented examples follow
three different directions: entity-driven, metamodel-driven,
and characteristic-driven. We belive that the use of the SME
approach can be the future of AOSE with regard to method-
ologies. It can use existing experiences and new “ideas and
features” to better exploit agent methodologies.

In the following we will explain the SME fragment approach
(Section 2), then in Section 3 we present three different ex-
amples that use this approach to build ad hoc methodologies.
Finally, after a short survey of related work (Section 4), in
Section 5 we propose some conclusions and future work.

2. SME

The Situational Method Engineering (SME), first proposed
by Kumar and Welke in [25], aims at defining methods to
develop systems, by reusing and assembling different exist-
ing portion of process. Following the more general Method
Engineering paradigm, every existing methodology can be
decomposed not only into phases, but also into small parts of

process called method fragments that are stored in a method
base. A method base is composed of contributions coming
from existing methodologies. In Figure 1 we can better see
the SME approach. The term fragment was first coined by
Harmesen in [1].

FRAGMENTS

I
/ A DEFINITION
| <
ey
Fragment construction
Existing methods/methodologies; quidelines
Best practices, Experience o (J i

o
& o
/_\ Method Base
&
- r |

¢ o
Situational F N\
Method

ASSEMBLY-BASED
SITUATION-SPECIFIC

_ < i3
:'_-)
METHOD CONSRUCTION V{;. % L

Fragments selection

STORAGE OF
FRAGMENTS IN
A METHOD BASE

Figure 1: Situational Method Engineering

In the literature different kinds of method fragments have
been proposed:

e Brinkkemperet et al.’s approach [6],
e Ralyté and Rolland (Method Chunk) [33],

e OPF (OPEN Process Framework) [19],

FIPA [35].

In the follow, we briefly describe every different approach.

According to Brinkkemperet et al., a method fragment is a
coherent piece of information system development. This ap-
proach considers two (sub)kinds of method fragment: the
Process fragment that describes the stage, activities and
tasks; and the Product fragment that concerns the struc-
ture of a process product (deliverables, diagrams, etc.). A
fragment can be composed of other fragments and can have
relationships with other fragments. Fur further details on
this approach see [6].

Ralyté and Rolland say that a method chunk is a consis-
tent and autonomous component that represents a portion
of process with its resulting work products. It is represented
using a metamodel (UML notation) composed of two parts:
the process aspect and the product aspect [33].

The OPF method fragment is part of existing methodologies
and is used to build new ones. It is based on the Object-
oriented Process, Environment, and Notation (OPEN) ap-
proach, and it is generated and stored in a repository with all
its guidelines based on OPF metamodel, which is composed
of five metaclasses. Each metaclass produces a method frag-
ment (process or product fragment). See [19] for details.

The FIPA method fragment is a reusable part of a design
process composed of a set of activities performed by process
roles in order to produce a kind of artefact (work product).
It is based on the process description model from the OMG
SPEM (Software Process Engineering Metamodel) and uses
the related notation [29].

Some comparisons of these approaches have been made in
literature (see for example [13], [23] and [26]). The approach
proposed in this paper uses the FIPA fragment’s notation,
because it is a well known and widely used notation, it better
suits our needs, and we find the SPEM support very useful.
In the following, Section 2.1, we give more details about the
FIPA method fragment.

2.1 Use of FIPA Fragments in SME

The FIPA Technical Committee Methodology [18] defines a
fragment as a portion of the development process for Multi
Agent Systems (MASs), composed of those (not always all)
elements:

e A portion of process (what is to be done, in what order)
defined using a SPEM diagram,

e One or more deliverables (artefacts like AUML/UML
diagrams, text documents, etc.),

e Some preconditions (required input data or required
guard conditions),

o A list of concepts (related to the MAS meta-model)
to be defined (designed) or refined during the specified
process fragment,

e Guidelines that illustrate how to apply the fragment
and best practices related to that,

e A glossary of terms used in the fragment,

e Other information (composition guidelines, platform
to be used, application area and dependency relation-
ships useful to assemble fragments).

We use FIPA fragments to compose methodologies to meet
the scenario’s requirements. In the following examples we
will face two kinds of scenario requirements: (i) the connec-
tion between agent methodologies and infrastructures (ex-
amples 1 and 2) and (ii) the characteristics of self-organizing
system (example 3). Following the FIPA approach, our job
will be supported by the use of SPEM [35].

Usually, in order to compose a methodology, the approach
can be divided into three main phases, following the SME
paradigm as assumed in [21]: Process Requirement Analysis,
Fragment Selection and Fragment Assembly.

In the first phase, the process engineers have to evaluate the
scenario requirements to be satisfied. This can be done in
different ways, for example defining important entities that
have to be considered in order to develop the system, or cre-
ating a metamodel, or considering the peculiar specifications
of the scenario (see the three different examples reported in
Section 3).

Then, starting from the evaluated requirements, the pro-
cess engineers have to extract from the repository the frag-
ments that both define these entities and suit the process.
Sometimes fragments for their specific purpose do not ex-
ist, so with the help of SPEM they have to create ad hoc
fragments starting from an existing methodology, or simply
from necessities. While making the selection, the process en-
gineers have to evaluate the fragments coming from different
methodologies: sometimes the same entity can be defined by
different fragments in different ways, and, after considering
the original methodology of the fragment, they have to de-
cide which one represent a better solution for their problems.

Until now the Fragment Assembly phase is the most dif-
ficult one because the process engineers have to evaluate
all the different starting methodologies (methodologies from
which the used fragments were extracted), and they have
to connect the different fragments considering the meaning
of entities and their relations. Today there is not any spe-
cific supporting tool for this work, but the PRoDe (PRocess
for the Design of Design PRocesses) Fragment Repository
created by Seidita et al. [36] has the Metameth tool to sup-
port the design process that is interesting to use and further
develop.

3. USING THE FRAGMENT APPROACH
Studying SME, we find out that it can be very useful to build
ad hoc methodologies by composing existing fragments or to
adapt existing methodologies by adding specific fragments.
This will permit to extend the use of existing “modified”
methodologies to different scenarios. We used SME in three
different directions, using three different approaches. In the
following we present these examples in the AOSE field to
show the possible uses of fragment composition.

The first example we present is MAR&A, a methodology
that was created to be strictly connected to infrastructures;
in this case, the methodology was built starting from the
main entities of the infrastructures, so this direction can
be called entity-driven. The second example is the MEnSA
methodology, created during the MEnSA Project [37] to fill
the existing gap between methodologies and infrastructures;
this second direction is called metamodel-driven, since in-
side the project we first defined a metamodel and then we
built the methodology based on it. The third example is re-
lated to self-organising systems, where no real methodology
is available, while existing fragments can be exploited to ful-
fil the scenario’s requirements; in this case, we have taken
into account the characteristics of the scenario, which are
not only the entities of the first case, leading to a direction
characteristic-driven.

These three examples can be viewed as three different direc-
tions that can be followed for fragments composition.

3.1 The MAR&A methodology

Our work started with the evaluation of the state-of-the-art
in the field of agent methodologies and infrastructures. With
regard to methodologies for developing agent systems, we
have chosen the most diffused ones, such as ADELFE [31],
Gaia [38], PASSI [14], SODA [28] and Tropos [5]. With re-
gard to the agent infrastructures, we studied CArtAgO [34],

JACK [2), JADE (3], MARS [9], RoleX [8], TOTA [27] and
TuCSon [30].

Starting from these methodologies and infrastructures, we
aimed at integrating them, evaluating possible matching be-
tween their concepts, represented by entities. Starting from
their metamodels we evaluated whether and to which extent
a matching exists, in order to give a continuous support in
the systems’ development. Then, we chose the methodology
fragments that manage the matching entities (reported in
Figures 2, 3 and 4 using the SPEM notation). We call this
direction entity-driven.

We focused on (i) the common processes and entities of the
methodologies and (ii) the entities that enable a connection
with the infrastructures. First of all, we have found out the
entities common to the different infrastructures. This was
useful to extrapolate the “core” entities, which deserved a
support by the methodologies. From the evaluation of the
infrastructures, these entities are agent, role and action.

We decided to propose a composed agent methodology, which
has the infrastructures’ main entities as goal for its out-
come. We remark that such entities are not only common
to different infrastructures, but also part of their foundation.
This makes them the best candidates to be considered as the
outcome of the new methodology; this also has the conse-
quence that the outcomes of the new methodology can be im-
plemented using different infrastructures. We started form
these entities and construct all the entities around, looking
at which where better connected in the starting methodolo-
gies.

The resulting composed methodology is called MAR&A (Method-

ology for Agent: Role & Action) (see [10] and [11]); it is an
almost complete methodology, since nowadays three phases
out of four of the whole process have been defined: Require-
ments phase (2), Analysis phase (3) and Design phase (4);
the Implementation phase is under construction.

3.2 The MEnSA methodology

The MEnSA methodology was proposed in the context of the
MEnSA project [37], whose aim was, as for MAR&A, to fill
the existing gap between methodologies and infrastructures
in the development of agent systems. However, differently
from the MAR&A approach, for MEnSA we defined a meta-
model for the methodology starting from the infrastructure-
related requirements, in which we summarized the features
of the methodology in terms of entities and relationships
among them. These requirements helped to build a general
methodology, which can be used in connection with different
infrastructures. In this sense, we can say that this direction
is metamodel-driven.

In this work we exploited the modified version of PRoDe
(PRocess for the Design of Design PRocesses) approach,
which is based on: the classic SME main phases cited be-
fore; a specific definition of method fragments (Process Frag-
ment) [12]; and the system metamodel. PRoDe starts from
the identification of the requirements of the new process in
terms of development context, problem type and organiza-
tion capabilities/existing processes maturity; these require-
ments are used to define the initial metamodel. Then, dif-

m

N =
ol
i .
— -~ Requirements
—
~
=

Doc
Problem > (Passi)
Statement Domgip ~
(Passi) Description L. N
e (Passi) oy
7" N E
% B

\A

Domain Description
Actor Diagram o

Diagram
(Tropos) (Passi) Scenarios
s // (Passi)
N 9 /
N 3]
o Tomme > W/
[
Analysis Goal Diagram
(Tropos) (Tropos)

Figure 2: MAR&A Requirement phase

ferent from PRoDe, starting from the entities proposed, we
have studied the project starting methodologies (Gaia [38],
PASSI [14], SODA [28] and Tropos [5]) and we have found
out a preliminary list of fragments that can define these en-
tities. In parallel, we have identified the order in which the
metamodel elements have to be instantiated during the de-
velopment of the new process. To this purpose, we have
exploited the Prioritization algorithm [36], which enabled
us to choose the fragments relying on the relationships in
the metamodel. For non existing fragments (i.e., those frag-
ments that have not been extracted from an existing method-
ology yet, or cannot be derived from existing methodolo-
gies), we had to construct them. Finally, we had to check
and, if needed, adjust the connections between the output
of a fragment and the input of the next one.

In Figure 5 we can see a first result of fragment composition
for the MEnSA methodology. It follows the Prioritization
algorithm (e.g. the dark rectangles are fragments that have
to be created).

3.3 Guidance for Self-organising Systems
Self-organising (simply self-org from now on) systems [16]
are more and more exploited to solve complex problems, so
it is very important to have methodologies that can help
developers to build this kind of system. Nature provides
many examples of self-organising systems: from non-living
systems (e.g. Bénard convection cells, mud cracks) to living
systems, such as biological processes of pattern formation.
These systems exploit desirable (complex) properties such as
robustness, resilience or self-reconfiguration, while the indi-
vidual entities forming these systems can be seen in terms of
agents, having a certain degree of autonomy, proactiveness
and able to interact.

~
Domain Description Actor Diagrams
Diagram (Tropos)

(Passn)
24
e DZDL = 'l
/

Agent identification S
(Passi) Agent 7 ff”a”"
/Idennf}aﬁén (Passi)
_Diagram
Vo

N (Passi)
T DZD _____
Prototypical Role

Model

- /

Requirements Identify the Role in the i
Gaia
Doc_ System Feaa)
(Passi) 7 (Gaia)

/ Roles Identification
(Passi)

&
U /m
L] %, O]
R A O
Roles Identification ~~ ']
o ‘!.
Diagram ~ DzD 1

(Passi)

Task Specification Task Specification
(Passi) Diagram

J/ (Passi)
®

Figure 3: MAR&A Analysis phase

Studying the state of the art, we find out that there are
some approaches to build self-org systems, but they are not
real methodologies (except for ADELFE, which has other
limitations not reported here). As we can see in [32], our
study points out that there are well-defined characteristics
of the self-org behaviour; for developers it is very important
to be able to address them. We call this direction charac-
teristics-driven.

Among others, the main characteristics that could be sup-
ported by existing methodologies’ fragments (in particular
taken from AOSE) are:

e endogenous global order: the system reaches some global
state that is produced from within the system itself;

e Jocality: the components of the system are aware of
their location and of local resources;

e emergent properties: there are properties that cannot
be found out by simply observing individual behaviour;

e adaptation: the system can react to the changes of the
environment.

As we can see from the above list, these characteristics dif-
fer in nature from the entities exploited in the MAR&A
approach, even if they can involve one or more entities. It
is also an approach different from the MEnSA one, since a
metamodel is not involved.

A unique methodology cannot be general enough for de-
scribing every self-org system. For this purpose, it can be
very convenient to have the possibility of reuse the methods
to develop important features, already provided by existing
methodologies such as Adelfe [31] or a General Methodol-

ogy [20].

Problem Statement

Means-end-analysis, AND/OR

A

H decomposition, Contribution Analysis Concepts
| Domain Ontology Q
System Rlequiremem.e Description Predicates
i (From Passi) Communication
.. > Ontology
Goal: Softgoal (NFR) + Hardgoal Task lAcﬁonS Ontology Description
Resource Dependancyg |, >— (From Passi)
' i A B L S N S S
”1 b é)De?)gi?d?ﬁr: T Communication
""" P H Dependee) : _ IR SR | :
! Requirement ! Problem Wt !
Constraint Agent :
behaviour | Identification R Communication Rid
(From Soda) | | ({Feinn (R
' L s H Agent Structure | @
[T N YRR AR RO TR R R T R >— Analysis egacy-System Definition
l Environment |—e@ H (From Multi agent|
(From Soda) structure definition| Onl.olo Rid
] ' H F. Passl) gy Rid.
| Rule | F E L A H H Topolo: Function
| : H pology (Resource rid) Design Agent
i H vy Implementation Task
C : H T T L
3 ‘1 Interaction [--icockoocboommmommmmmmm s oo m s
: H Protocol i
"""""""" v i ; (From Identify —e Operation
Organizationpl Rule : H ?hnd Docuyn(erét :
H e associated | Protocol
protocol F. Gaia) H |—® Workspace
Llnﬁeracnon Soda Resource Artifact
E H Permission | F T
_________________ °
Role ElaborgteeRole Responsibilities
] o (Form Gaia)
Activity

_____ >

|

Organization
>—— (From Soda)

o
I Interaction Design ===
Manifests (From Soda) °
Uses N
Links tti lSpeaks to Service

*—| Develope a
Service Model

(From Gaia)

Soc\etyl lAggregale

Figure 5: MEnSA methodology following the Prioritization algorithm

We exploited some case studies [32] to find out which frag-
ments are necessary to build a self-org system, then we ex-
tracted them from the considered methodologies (see for
example Figure Figure 6), to make the developers able to
integrate them in their own methodology.

These fragments alone are not enough to build a complete
methodology, because we have to consider more entities like
goal, role, activity, plan, ontology and so on, according to de-
veloper’s needs; nevertheless, we wrote some guidelines [32]

to help developer integrate these fragments in existing method-

ologies. In these guidelines we underline how a fragment is
related to a specific characteristic of self-org systems, and
in this way a developer can be able to insert the specific
fragment into her methodology.

4. RELATED WORK

In literature we find other approaches concerning fragments
composition. Since 1999, [7] proposes a framework for hier-
archical method modelling (meta-modelling) using methods
and/or method fragments. The paper explains how to as-
semble method fragments into a situational method and for-
malize rules to construct meaningful methods. In [4] meta-
models of existing methodologies are compared in order to
be composed in a single metamodel. Here the fragment ap-
proach is not directly used but the main idea is the same of
ours: to compose existing methodologies in order to create
another one. In [15], the authors start form PASSI and some
important requirements to compose the original methodol-
ogy with other fragments in order to create Agile PASSI.
This methodology was born to allow the quick prototyping
of agent-oriented applications. One of the last examples is

GORMAS (Guidelines for ORganizational Multi-Agent Sys-
tems) [17], an Organizational-Oriented Methodology that,
using SPEM, aims at integrating MOISE, ANEMONA and
INGENIAS meta-models, so as to cover all typical aspects
for designing agent systems, but also all organizational and
functional aspects needed from both Organization Theory
and Service-Oriented paradigm it is based on.

5. CONCLUSIONS AND FUTURE WORK

Situational Method Engineering (SME) is an approach that
enables the definition of new methodologies by composing
fragments of existing ones. It is a very powerful approach
and we figure out that the complexity of current and future
scenarios will require such an approach in order to support
the job of process engineers, even if it is currently considered
quite complex to apply. This is why we think that it can be
the future of AOSE.

In this paper we have shown three examples of method com-
position applying SME, which follow three different direc-
tions:

e an entity-driven direction (MAR&A), which considers
the main entities of the scenario;

e a metamodel-driven direction (MEnSA), which relies
on a metamodel that defines entities and their rela-
tionships;

e a characteristic-driven direction (self-org), which con-
siders characteristics of the scenario in which the ap-
plication is to be developed; we remark that entities of

’

"

; Domain Ontology
Dol Oftology Description Diagram

Description (P: ass')
(Passi)
—
0 ' 0 %/m
i Communlcal\on H
Onology Description ¢, mmunication Agar
Roles Idennhcatlon (Passi) Ontology !dent?ﬁcahon
Diagram \ I Desc(an;;J;)D\agram Disgram
(Passi) N | (Passi)
V-
ﬂRo{es Description —_—
~ (Passi) AT Oy
PP L — Ny
=
; N

o < - \\g | (S) Agent Structure
7 _ A= E' Definition
m -~ = A (Pest)
- Role

] Servncgs Dtelscnpuon n \l/ N
Task Specification (Passi) ‘;9’3’" !'
Diagram {Passn
Ct

{Passl) (S) Agent Structure Prototypical
Definition Diagram Role Model
(Passi) (Gaia)
3
\ Vs

s

N
&
Create an Agent

Model
(Gaia)

0
>
Agent Model

Diagram
(Gaia)

Figure 4: MAR&A Design phase

the first direction can be a subset of the characteristics
of this direction.

Comparing them, we found out that the metamodel-driven
direction is more complex, because a new metamodel must
be defined, but it leads to a well-founded and more flexi-
ble methodology, allowing easier modifications and mainte-
nance. Moreover, it is a more general direction, which can
be followed even the developer does not know in details the
interested entities (or infrastructures in our case).

Instead, the entity-driven direction allows to focus on spe-
cific entities (of infrastructures in our case), thus producing
a more suited methodology for specific needs, but more dif-
ficult to adapt in case of changes in the scenario.

Finally, the characteristic-driven direction relies on higher-
level requirements, such as the ones related to character-
istics, instead of entities; so it can be adopted where the
scenario does not impose well-defined entities, rather func-
tional or non-functional requirements. This approach can
be easier to apply because it permits to reuse a whole exist-
ing methodology, adding the specific fragments. But at the
same time the developer needs a great capacity of integra-
tion and adaptation to introduce the new fragments in the
known methodology.

As mentioned in the introduction, the SME approach is very
powerful but at the same time quite complex. With regard
to future work, our aim is to propose a semi-automatic ap-
proach that can be exploited to support the composition
of methodologies following the SME paradigm; to this pur-

REQUIREMENT and ANALYSIS Phase \

Describe the Environment F.

Envlronmen(Description F. (Gardell)

(Adelfe)
O Use Case Description F. (Adelfe)

Adequacy Verification F. (Adelfe)

Identification of Pattern and Mechanism
(GDM

O Agents Identification (Adelfe) j

DESIGN Phase \
O Agent Specification (Adelfe) O
Identify Software Architecture (GDM)
Locality Identification (De Wolf)
Information Flow Definition
O (De Wolf) O

Control Mechanism Definition
O Run Time Infrastructure (Gershenson)

Definition (GDM) /

SIMULATION Phase }

{ IMPLEMENTATION Phase }

TEST ’md EVALUATION Phase }

Figure 6: Positioning of extracted fragments for self-
org systems

pose we will exploit state-of-the-art techniques to manage
the fragments.

6. REFERENCES

[1] H. A.F., S. Brinkkemper, and H. Oei. Situational

Method Engineering for Information System Projects.
In Proc. of the IFIP WGS8.1 Working Conference
CRIS’94, pages 169-194, 1994.

[2] AOS Autonomous Decision-Making Software. Jack
agent platform. http://www.agent-software.com/,
2008.

F. Bellifemine. Developing multi-agent systems with

jade. In Proceedings of PAAM 99, London (UK),

pages 97-108, 1999.

[4] C. Bernon, M. Cossentino, M. Gleizes, and P. Turci. A
Study of Some Multi-agent Meta-models. In
Agent-Oriented Software Engineering V: 5th
International Workshop, AOSE 2004, New York, NY,
USA, July 19, 2004: Revised Selected Papers, page 62.
Springer, 2005.

[5] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia,
and J. Mylopoulos. Tropos: An Agent-Oriented
Software Development Methodology. Autonomous
Agents and Multi-Agent Systems, 8(3):203-236, 2004.

[6] S. Brinkkemper, M. Saeki, and F. Harmsen. Assembly
techniques for method engineering. Lecture Notes in
Computer Science, 1413:381-400, 1998.

[7] S. Brinkkemper, M. Saeki, and F. Harmsen.
Meta-modelling based assembly techniques for
situational method engineering. Information Systems,
24(3):209-228, 1999.

3

8]

[13]

[14]

[15]

[16]

[17]

G. Cabri, L. Ferrari, and L. Leonardi. Enabling mobile
agents to dynamically assume roles. In Proceedings of
the ACM Symposium on Applied Computing,
Melbourne (USA), March, pages 56—60, 2003.

G. Cabri, L. Leonardi, and F. Zambonelli. MARS: a
programmable coordination architecture for mobile
agents. Internet Computing, IEEE, 4(4):26-35, 2000.
G. Cabri, M. Puviani, and L. Leonardi. The mar&a
methodology to develop agent systems. In Proceedings
of the International Conference on Agents and
Artificial Intelligence (ICAART 2009), Porto
Portugal, January 2009, 1 2009.

G. Cabri, M. Puviani, and R. Quitadamo. Connecting
Methodologies and Infrastructures in the Development
of Agent Systems. In The V Workshop on
Agent-Based Computing (ABC 08) at IMCSIT 2008,
Wisla, Poland, 2008.

M. Cossentino, S. Gaglio, A. Garro, and V. Seidita.
Method fragments for agent design methodologies:
from standardisation to research. International
Journal of Agent-Oriented Software Engineering,
1(1):91-121, 2007.

M. Cossentino, S. Gaglio, B. Henderson-Sellers, and
V. Seidita. A metamodelling-based approach for
method fragment comparison. In Proceedings of the 11
th International Workshop on Exploring Modeling
Methods in Systems Analysis and Design (EMMSAD
06), 2006.

M. Cossentino, L. Sabatucci, S. Sorace, and A. Chella.
Patterns reuse in the PASSI methodology. In
ESAWS03, pages 29-31. Springer, 2003.

M. Cossentino and V. Seidita. Composition of a New
Process to Meet Agile Needs Using Method
Engineering. Software Engineering for Multi-agent
Systems I1I: Research Issues And Practical
Applications, page 36, 2005.

G. Di Marzo Serugendo, M. Gleizes, and

A. Karageorgos. Self-organization in multi-agent
systems. Knowledge Engineering Review,
20(2):165-189, 2005.

V. B. E. Argente and V. Julian. GORMAS: An
Organizational-Oriented Methodological Guideline for
Open MAS. In Agent-Oriented Software Engineering:
10th International Workshop, AOSE 2009, Budapest,
Hungary, May 10, 2009, pages 85-96. Springer, 2009.
FIPA Methodology Technical Committee. FIPA.
http://www.pa.icar.cur.it/~ cossentino/ F 1P Ameth.
D. Firesmith and B. Henderson-Sellers. The OPEN
Process Framework. An Introduction. Harlow, UK:
Addison- Wesley, 2002.

C. Gershenson. Design and control of self-organizing
systems. Vrije Universiteit Brussel, 2007.

D. Gupta and N. Prakash. Engineering methods from
method requirements specifications. Requirements
Engineering, 6(3):135-160, 2001.

B. Henderson-Sellers. Method engineering: Theory
and practice. In Information Systems Technology and
its Applications. 5th International Conference ISTA
2006, pages 13-23, 2006.

B. G.-P. Henderson-Sellers and J. C. Ralyté.
Comparison of Method Chunks and Method
Fragments for Situational Method Engineering. In

24]

25]

[26]

27]

(28]

29]

(30]

(31]

32]

(33]

(34]

(35]

(36]

37]

(38]

Proceedings of the 19th Australian Conference on
Software Engineering, pages 479-488. Technol. Univ.,
Sydney, 2008.

N. Jennings and M. Wooldridge. Agent-oriented
software engineering. Lecture notes in computer
science, pages 4-10, 1999.

K. Kumar and R. Welke. Methodology Engineering R:
a proposal for situation-specific methodology
construction. John Wiley Information Systems, pages
257-269, 1992.

X. Larrucea. Situational Method Fragment Selection
and Composition. In Composition-Based Software
Systems, 2008. ICCBSS 2008. Seventh International
Conference on, pages 243-243, 2008.

F. Mamei and F. Zambonelli. Programming stigmergic
coordination with the TOTA middleware. In
Proceedings of the /" international conference on
Autonomous Agents and Multi-Agent Systems, New
York (USA), pages 4150422, 2005.

A. Molesini, A. Omicini, E. Denti, and A. Ricci.
SODA: A roadmap to artefacts. Engineering Societies
in the Agents World VI, 3963:49-62, 2006.

Object Management Group. SPEM.

http://www.omg.org/technology /documents/formal /spem.htm.

A. Omicini and F. Zambonelli. Coordination for
internet application development. Autonomous Agents
and Multi-Agent Systems, 2(3):251-269, 1999.

G. Picard and M. Gleizes. The ADELFE
Methodology—Designing Adaptive Cooperative
Multi-Agent Systems. Methodologies and Software
Engineering for Agent Systems. Kluwer Publishing,
2004.

M. Puviani and G. D. M. Serugendo. Methodologies
for Self-Organising Systems: a SPEM Approach -
preliminary draft. Technical Report DII-AG-2008-2,
Dipartimento di Ingegneria dell’Informazione
University of Modena and Reggio Emilia, 2008.

J. Ralyté and C. Rolland. An approach for method
reengineering. Lecture Notes in Computer Science,
pages 471-484, 2001.

A. Ricci, M. Viroli, and A. Omicini. CArtAgO: A
framework for prototyping artifact-based
environments in MAS. In D. Weyns, H. V. D.
Parunak, and F. Michel, editors, Environments for
MultiAgent Systems, volume 4389 of LNAI, pages
67-86. Springer, Feb. 2007.

V. Seidita, M. Cossentino, and S. Gaglio. Using and
Extending the SPEM Specifications to Represent
Agent Oriented Methodologies. Proceedings of CAiSE
07, 2007.

V. Seidita, M. Cossentino, V. Hilaire, N. Gaud,

S. Galland, A. Koukam, and S. Gaglio. The
Metamodel: a Starting Point for Design Processes
Construction. International Journal of Software
Engineering and Knowledge Engineering, 2009.

The MEnSA project. MEnSA Web site.
http://www.mensa-project.org/.

F. Zambonelli, N. Jennings, and M. Wooldridge.
Developing multiagent systems: The Gaia
methodology. ACM Transactions on Software
Engineering and Methodology (TOSEM),
12(3):317-370, 2003.

