A REC-Based Commitment Tracking Tool

[System Demonstration]

Federico Chesani
University of Bologna

federico.chesani@unibo.it

Marco Montali
University of Bologna

marco.montali@unibo.it

1. INTRODUCTION

Social commitments are commitments made from an agent
to another agent to bring about a certain property. In broad
terms, a social commitment represents the commitment that
an agent, called debtor, has towards another agent, called
creditor, to bring about some property or state of affairs,
which is the subject of the commitment.

Commitments are a well-known concept in Multi-Agent
Systems (MAS) research [2, 6]. Representing the commit-
ments that the agents have to one another and specifying
constraints on their interactions in terms of commitments
provides a principled basis for agent interactions [8].

Central to the whole approach is the idea of manipulation
of commitments: their creation, discharge, delegation, as-
signment, cancellation, and release, since commitments are
stateful objects that change in time as events occur. Time
and events are, therefore, essential elements.

In our previous research [7] we introduced an abstract
architecture for the specification and reasoning about social
commitments. It supports the CML Commitment Modeling
Language, and it is based on a reactive version of the Event
Calculus [5] called REC [3]. In this demo, we show a concrete
instantiation of the framework and the functioning of its
prototypical version implemented in Java+Prolog.

2. CML ARCHITECTURE

The architecture that supports CML, represented in Fig-
ure 1, consists of 4 layers: a user application top layer,
one for commitment modeling below, a further tempo-
ral representation and reasoning layer, and a reason-
ing and verification one at the bottom.

On the top layer, the user can define agent social inter-
action rules, or contracts, using commitments. Such defini-
tions are based on a language provided by the layer below.
The commitment modeling language is implemented using
a temporal representation and reasoning framework, which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WOODSTOCK ’97 El Paso, Texas USA

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Paola Mello
University of Bologna

paola.mello@unibo.it

Paolo Torroni
University of Bologna

paolo.torroni@unibo.it

is in turn built on top of a more general reasoning and ver-
ification framework, which lies at the bottom layer. It is
important to rely on a formal framework that accommo-
dates various forms of verification, because in this way com-
mitments can be operationalized and the user can formally
analyze commitment-based contracts, reason on the state
of commitments, plan for actions needed to reach states of
fulfillment, and track the evolution of commitments at run-
time.

We gave a concrete instantiation of such an architecture.
We use it to implement the first CML prototype.

At the bottom layer, there are a number of Prolog+CLP
modules which implement the SCIFF family of proof-proce-
dures and provide the SCIFF language to the layer above
[1]. The SCIFF framework is based on abductive logic pro-
gramming and it consists of a declarative specification lan-
guage and a family of proof-procedures for reasoning from
SCIFF specifications. Some kinds of reasoning are: deduc-
tion, hypothetical reasoning, static verification of properties,
compliance checking and run-time monitoring. In general,
SCIFF comes in hand for a number of useful tasks in the con-
text of agent interaction. A high-level description of SCIFF
and of its usage is given in [8], also in relation with commit-
ments. The CLP solvers integrated in SCIFF can work with
discrete and dense domains, depending on the application
needs, and they are particularly useful for reasoning along
the temporal dimension.

On top of the SCIFF layer there is the SCIFF implementa-
tion of the £C, REC. There are several implementations for
EC. One of them which uses ideas taken from CEC and thus
enables runtime verification, is called the Reactive Event
Calculus (REC) and it is implemented in SCIFF. The Event
Calculus is a powerful formalism for temporal representation
and reasoning introduced by Kowalski and Sergot [5]. REC
is its reactive axiomatization, described in [3], and it is im-
plemented as a SCIFF program. This layer provides to the
layer above the REC language, which consists of domain-
dependent axioms.

In the third layer, the constructs that define the Com-
mitment Modeling Language (CML), i.e., the notation pro-
posed above, are written by way of REC theories. Thus this
layer will provide the language to write a CML Program
(CProgram) to the top layer.

The top layer consists of user and domain-dependent knowl-
edge encoded into a C' Program.

(CML Program)

User and Domain Knowledge Base

create, discharge, cancel, ...

(REC Theory)

Commitment Modeling Language

initiates, terminates

(SCIFF Program)

Reactive Event Calculus

holds_at, clipped, mvi, E, H, ...

(Prolog + CLP)

SCIFF Framework

SICStus Prolog clauses,
clp(fd), clp(R), CHR constraints

Figure 1: Social commitment framework architecture

A CProgram is made of rules. A rule in the form
CRuleHead «— CRuleBody (1)

is used to define effects of events on the state of commit-
ments. More specifically, the user can use such rules to de-
fine for instance which events create, discharge, or break
which commitments, in the style of [9]. The body defines
the context, i.e., the conditions that must hold in order for
an event to have an effect on the state of a commitment. If
no context is defined, the rule is said to be a fact.

Atoms in the body of rules may be external predicates,
not defined in the commitment specification program (this
should be allowed because of the modularity principle), or
they can be fluents modeling the state of commitments.
Such a state can be associated with existentially quanti-
fied temporal variables (holds_e notation) or with univer-
sally quantified intervals (holds_u notation).

3. EXAMPLE

The example that we use in the demo is the following.

Let us consider a car rental company r and a customer
c. The former guarantees that its cars will not break down
for at least two days, promising an immediate replacement
if one does.

This situation can be represented by the C Program that
follows, where by H(break_down(T)) we denote an event
occurred (“Happened”) at time 7"

create(rent_a_car(Te,T.), C(r, ¢, [Te, Te + 2]great_car),).
create(break_down, C(r, ¢, [Ty]replace_car), Ty) «— @)
T - <Tpy+1A
holds_at(viol(C(r, ¢, [Ts, Te|great_car), Ty), Tp).

The first rule says that renting a car creates a commitment
C(r,c, [Te, Te+2]great_car) that the car will not break down
in the first two days. The commitment is created the time
the car is rent, thus it is left unbound ().

The second rule says that if the car breaks down in the first
two days, by which a commitment C(r,c, [T¢, Te|great_car)
is violated, then another commitment is created about a
replacement car to be sent before 1 day. Here we explicitly
denote by T, the time the car breaks down, because the
commitment is created only if the violation holds at the
same time.

The EC predicate holds_at(F,T) means that a given fluent
F holds at a time T [5]. Additionally, our language provides

predicates holds_e(F,T1,T>)/holds_u(F,T1,T>) to indicate
that a given fluent F" holds at some point/at all points inside
the time interval [T, T2].

In this demo, we use the CM L Tool based on the C' Program
above. In particular, as events occur (car is rented, car
breaks down, time passes, car is replaced, etc) commitments
are created, discharged, violated, etc. CML Tool shows the
state of commitments in time, as events occur.

We will show several situations. Time granularity is one
day.

Situation 1 At day 2, ¢ rents a car from r for the period
that goes from day 17 to day 20. This is represented
by an event H(rent_a_car(17,20),T). Such an event
initiates a fluent representing a commitment, in which
r is the debtor, and c the creditor, and the subject
great_car indicates that the car will not break down.
At day 18 the car breaks down. At day 19 the car is
replaced. As events occur, CML Tool shows that a
commitment C(r, ¢, [T., Tc + 2]great_car) is created on
day 2 and then violated on day 18, and then that a
commitment C(r, ¢, [T]replace_car) is created on day
18 and fulfilled on day 19.

Situation 2 As a variation of Situation 1, the replacement
car is sent out on day 20. CML Tool shows a double
violation.

Situation 3 As a variation of Situation 1, the car breaks
down on day 13, and is replaced on day 16. All hap-
pens before the rental period starts. C(r,c,[T.,Tc +
2|great_car) is not affected. CML Tool shows ful-
fillment after day 18, and it shows how great_car,
which is initially true, changes value as the car breaks
down (becames false) and gets replaced (becomes true
again).

Situation 3 As a variation of Situation 1, the car breaks
down on day 20. CML Tool shows that no commit-
ment is violated.

4. TOOL DESCRIPTION

Let us now briefly describe the system implementation
from a technological and engineering perspective.
4.1 System requirements

The problem addressed is commitment tracking. The sys-
tem requirements are

CML Program

Y
events
Collector
Mo’
fluents —
%4— Visualizer

REC Commitments
theory

Program
Commitments

SICSTUS
CML

REC
Server

[

events

theory

fluents

Figure 2: Logical system architecture

e a formalism to describe events that are relevant for
commitment tracking and manipulation

e a formalism to describe the theory of commitments

e an operational framework that receives events at run-
time, and based on a commitment theory and back-
ground knowledge outputs the state of commitments
along the temporal dimension

e there are two execution modes: runtime (the user in-
puts events one by one), or simulated runtime (events
are taken from a logged event narrative and the system
reasons from events one by one as if they were actually
produced at runtime)

e the end user must be able to use the tool by inputting
events (or by selecting a logged event narrative), and
by defining CPrograms, but without having to de-
scribe the underlying theories (REC, SCIFF, ...)

e output should be easily readable (e.g., graphics)

4.2 Design and implementation

Reasoning is done by the SCIFF engine, which is im-
plemented in SICStus Prolog and CHR. The user inter-
face is achieved via a Java module which receives events
and C'Programs in inputs, queries the SCIFF engine, and
returns a pictorial representations of commitment states.
These states are captured by fluents (commitment z is ac-
tive, commitment x is violated, property y holds, ...).

The logical system architecture is depicted in Figure 2. In
particular, Figure 2(a) shows the reasoning engine (SCIFF)
data flow. The SCIFF reasoner needs REC theory, C Program
and the theory of commitments. It takes events from an
event collector module and produces the maximum valid-
ity intervals of fluents. Figure 2(b) describes the interplay
between Java and SICStus. A Java thread takes events in
input and interfaces with the SCIFF reasoner. Such a rea-
soner is a SICStus Prolog server, which provides 4 methods
(predicates):init, startREC, fetchevent, and endREC, and out-
puts the set of all fluents in the form of an XML structure.
Such an XML structure is sent back to the Java interface,
which produces and updates the graphic representation of
fluents (see the screenshot in Figure 3).

‘ c{r,c,gr&perty(u(12.0,14‘0),great_car)) l

‘ car_replaced I

‘ great_ca

start[0]
(12.0,20.0)[3
tic[15]

- [16]—
replace_car[18]
complete[28]

break_down

rent_a_car|

Figure 3: Output of the REC-based tool

4.3 Perspectives

We have tested the system using examples from literature
[7],[4]. The CML system is still at a prototypical state. It
has not been used to address “real” case studies (yet). How-
ever, the need of such a tool has emerged from an analysis
of real-world scenarios. We hope to find the resources we
need to engineer the CML system and propose it to an au-
dience of practitioners. A possibility we are investigating
is to wrap REC into a plugin for widespread tools such as
ProM,! as we already did with another SCIFF-based tool
called SCIFFchecker.

5. REFERENCES

[1] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma,

P. Mello, and P. Torroni. Verifiable agent interaction in

abductive logic programming: the SCIFF framework.

ACM Transactions on Computational Logic, 9(4):1-43,

2008.

C. Castelfranchi. Commitments: From individual

intentions to groups and organizations. In V. R. Lesser

and L. Gasser, editors, Proceedings of the First

International Conference on Multiagent Systems, pages

41-48. The MIT Press, 1995.

[3] F. Chesani, P. Mello, M. Montali, and P. Torroni.
Commitment tracking via the reactive event calculus. In
Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI). AAAI Press, 2009.

[4] F. Chesani, P. Mello, M. Montali, and P. Torroni.
Verification of choreographies during execution using

2

http://prom.sourceforge.net/

[5]

[6]

[9]

the reactive event calculus. In Web Services and Formal
Methods, 5th International Workshop, WS-FM 2008,
Milan, Italy, September 4-5, 2008, Revised Selected
Papers, volume 5387 of Lecture Notes in Computer
Science, pages 55-72, Berlin Heidelberg, 2009. Springer
Verlag.

R. A. Kowalski and M. Sergot. A logic-based calculus of
events. New Generation Computing, 4(1):67-95, 1986.
M. P. Singh. An ontology for commitments in
multiagent systems: Toward a unification of normative
concepts. Artificial Intelligence and Law, 7:97-113,
1999.

P. Torroni, F. Chesani, P. Mello, and M. Montali.
Social commitments in time: Satisfied or compensated.
In Proceedings of the 7th International Workshop on
Declarative Agent Languages and Technologies (DALT).
http://www.di.unito.it/ baldoni/DALT-2009/, 2009.
P. Torroni, P. Yolum, M. P. Singh, M. Alberti,

F. Chesani, M. Gavanelli, E. Lamma, and P. Mello.
Modelling interactions via commitments and
expectations. In V. Dignum, editor, Handbook of
Research on Multi-Agent Systems: Semantics and
Dynamics of Organizational Models, pages 263—284,
Hershey, Pennsylvania, Mar. 2009. IGI Global.

P. Yolum and M. Singh. Flexible protocol specification
and execution: applying event calculus planning using
commitments. In Proc. 1st AAMAS, pages 527-534.
ACM Press, 2002.

