A Self-Organized Multiagent Approach for Distributed
Management of Contextual Data

Gabriella Castelli
DISMI
University of Modena and Reggio Emilia
42100 Reggio Emilia, Italy

gabriella.castelli@unimore.it

ABSTRACT

Pervasive computing devices are able to generate enormous
amounts of data, from which knowledge about situations
and facts occurring in the world should be inferred for the
use of pervasive services. However accessing and managing
effectively such a huge amount of distributed information
is challenging for services. In this paper we propose a self-
organized approach to autonomously organize distributed

contextual data items into sorts of knowledge networks. Knowl-

edge networks are conceived as an alive self-organized layer
in charge of managing data, that can facilitate services in
extracting useful information out of a large amount of dis-
tributed items. We motivate our approach and present the
W4 Data Model that we used to represent contextual data.
On these basis, we introduce the general idea of W4 Knowl-
edge Networks and we detail the specific bio-inspired ap-
proach for self-organized networking of data items. A case
study is introduced to clarify the concepts expressed, and
experimental results are reported to support our arguments
and proposal.

Categories and Subject Descriptors
J.9 [Mobile Applications]: Pervasive Computing; 1.2.11

[Artificial Intelligence|: Distributed Artificial Intelligence—

Multiagent Systems

Keywords
Pervasive Computing, Self-Organization, Context-Awareness,
Knowledge Engineering

1. INTRODUCTION

Pervasive and mobile computing scenarios consider the pos-
sibility of providing users with ubiquitous and on the move
access to digital services, and of supporting users interac-
tions with their surrounding environments. For this possi-
bility to become practical, services should be able to un-
derstand situations occurring in the surrounding physical
context and autonomously adapt their behavior to the con-
text from which they are requested. This requires both the
technology to capture contextual data and the capability of
services to exploit such data at the best [10, 7] .

Pervasive devices are already able to generate an overwhelm-
ing amount of data, from which knowledge about situations
and facts occurring in the world should be inferred for the
use of pervasive services. Accordingly, the real challenge for
future pervasive services is the investigation of principles,

Franco Zambonelli
DISMI
University of Modena and Reggio Emilia
42100 Reggio Emilia, Italy

franco.zambonelli@unimore.it

algorithms, and tools, via which this growing amount of dis-
tributed information can be properly represented, organized,
aggregated, and made more meaningful, so as to facilitate
the successful exploitation by pervasive services [16].

Traditional (e.g., centralized and/or deterministic) approaches
to data organization and aggregation are not practical in this
scenario because of the enormous amount of generated data
and the decentralized, dynamic, and unpredictable nature
of pervasive systems. Accordingly, in this paper, we pro-
pose a self-organized approach to organize, link, and aggre-
gated, related items of contextual information. In the pro-
posed approach a multitude of simple agents, each in charge
of a specific relationship among data, continuously analyze
and scan the data space in order to link together isolated
pieces of data. The overall result is the self-organization
of the data space in networks of linked data, called Knowl-
edge networks. Such knowledge networks can eventually be
browsed by other agents that are in charge of inferring new
knowledge from the existing one. We show that knowledge
networks can be easily accessed by services that are in need
of contextual knowledge, and that accessing such an orga-
nized and distributed data space is beneficial for services
because knowledge management costs and knowledge access
costs are reduced. We also show with evaluation results that
knowledge networks may be beneficial for services that are
in need of solving complex queries over contextual data.

The remainder of this paper is organized as follow: Section
2 motivates the paper and present the scenario that will be
used in the following of the paper. Section 3 presents the
W4 Contextual Model that is used as underlying data model,
Section 4 introduce the Knowledge Networks approach and
Section 5 discuss evaluation results. Section 6 presents Re-
lated Work and finally Section 7 concludes.

2. MOTIVATIONS AND SCENARIO

Ubiquitous computing considers the possibility for users to
access general digital services from everywhere and on the
move. Pervasive computing additionally considers exploit-
ing pervasive networks, made up of both sensing and data-
consumer devices, and possibly actuating infrastructures for
the provisioning of innovative services for on-line monitoring
of surrounding world and interacting with it, as well as ser-
vices for enhancing our social experiences in an environment
by enabling novel models of localized social interactions. In
both cases, it is clear that pervasive services have to collect
information about situations around and acting accordingly,

i.e. they should be context-aware. Moreover, given the in-
trinsic dynamics and decentralization of pervasive scenarios,
autonomic behavior is necessary to ensure servicesS conti-
nuity without forcing costly and hard to be managed human
intervention.

A number of technologies that contribute producing large
amounts of contextual information already exists. The pro-
duced items of contextual information (i.e., “data atom”),
contribute populating a large cloud of data atoms and at
making it available to services (see Fig. 1). A service in
need of understanding what is happening around can access
(i.e., internalize) the needed data atoms and analyze them
to understand what is the current situation of its context.
Unfortunately, such description is far too simplistic and does
not emphasize a number of complexities inherent in it: the
process of data internalization can lead to high communica-
tion and computational costs for a service, in that it may
require accessing large amounts of data atoms, and the pro-
cess of analyzing retrieved contextual data atoms and turn-
ing them into useful knowledge may be non-trivial.

1 8B ©

Data produf:t?bn Iay

Figure 1: Pervasive devices and sensors make avail-
able to services a sort of “data cloud layer”, fed with
large amounts of heterogeneous data atoms. their
own goals.

In this paper we claim that there must be an evolution from
a model of simple context-awareness, in which services access
isolated pieces of contextual data and are directly in charge
of digesting them, towards a model of situation-awareness,
in which services access properly structured and organized
information reflecting comprehensive knowledge that is re-
lated to a “situation” of interest. With reference to Figure
2, we envision that the access by services to contextual in-
formation does no longer occur directly, but rather via a
“knowledge network” layer. Such layer should encapsulate
mechanisms and tools to analyze and self-organize contex-
tual information into sorts of structured collections of re-
lated data items, i.e. knowledge networks. From the soft-
ware engineering viewpoint, an approach based on knowl-
edge networks has the advantage of providing a clear sepa-

2 1
_____ O I R R oty ey S AP 18] (A] LS MO S

' ra:w data

> B B oL

Figure 2: By exploiting a knowledge network layer,
services are no longer forced to access the raw data
cloud layer. Knowledge organization and analysis
is externalized in the middleware, and services are
given access to pre-digested information, with a no-
table complexity reduction.

ration of concerns between data analysis and data exploita-
tion. While data analysis and organization is delegated to
the knowledge network layer, services are left with the only
duty of exploiting such data to reach specific functionalities.

University campuses are excellent test-bed scenarios to large
scale pervasive systems. They are densely populated by in-
dividuals carrying a variety of pervasive devices. Moreover,
existing network and security infrastructures facilitate peo-
ple to be always connected and able to get additional infor-
mation about what is happening in their surroundings. Such
information can be fruitfully exploited by context-aware ser-
vices as the ones discussed above. The illustrated scenario
will be used as a running example in later sections of this
paper, however we point out that this case study is effec-
tive for generalization and the related issues are recurrent
in every pervasive system that deals with huge amounts of
data.

Consider the scenario in which Gabriella, a university stu-
dent, has a Wi-Fi enabled PDA that collects information
about about herself, share it with other users on campus,
and can also access other usersS information. The campus
infrastructures themselves can collect data about Gabriella
and make it available. In general, the user exploits classical
contextual services and takes advantages of the knowledge
management and generation features in the system to re-
trieve the desired information. In fact, the system itself can
continuously analyze data coming from pervasive devices in
the attempt to infer and extract new knowledge, and inject
it again in the system. Just thinking to the tens of thousand
students that a medium campus may have, and understand-
ing that data is also coming form pervasive sensor networks
densely distributed in the campus, it is quite clear that the

overall system may lead to the creation of an overwhelming
amount of data and inferred knowledge. Therefore, tools for
knowledge generation from raw data and data organization
are necessary to make the system usable.

For the knowledge networks to be attainable and become
a useful tool, both in the case study and in general perva-
sive scenarios, a number of challenges have to be faced. In
particular:

e Data Model. There is the need for a simple, general-
purpose and uniform model to represent contextual in-
formation as individual data atoms as well as their ag-
gregates.

e Access to data. It is necessary to identify a suitable
API by which services can be given access to the knowl-
edge network layer and the information within.

e (eneral approaches for data aggregation. The knowl-
edge networks should be a Slive layerT continuously
and autonomously analyzing information to aggregate
data atoms, relate existing knowledge atoms with each
other, and extract meaningful knowledge from the avail-
able data.

e Application specific views. Specific services may re-
quire the dynamic instantiation within the knowledge
networks of application-specific algorithms for knowl-
edge analysis.

In the following Section the W4 Data Model and the related
API will be introduced.

3. THE W4 APPROACH

Our proposal for a novel, simple yet effective, data model for
expressing contextual knowledge about the world starts from
the consideration that any elementary data atoms as well as
any higher-level piece of contextual knowledge, in the end,
represents a “fact” which has occurred. Such facts can be ex-
pressed by means of a simple yet expressive four-fields tuples
Who, What, Where, When: “someone or something (Who)
does/did some activity (What) in a certain place (Where)
at a specific time (When)”.

Their four-fields structure is flexible and general enough to
uniformly deal with information coming from diverse sources
and can account for adaptation to context and incomplete
information (i.e., some of the four fields being unspecified).

In addition, the simple W4 structure supports general dis-
tributed algorithms for data aggregation and manipulation,
and facilitates the building of semantic knowledge networks
and of multiple, application-specific views as it will be de-
scribed in Section 4.

3.1 Data Representation
The four-fields (Who, What, Where, When) of the W4 data
model each describes a different aspect of a contextual fact.

e The Who field associates a subject to a fact. The Who
field is represented by a type-value pair, in the form

of a string, with an associated namespace that defines
the type of the entity that is represented. E.g., student:
Patricia.

e The What field describes the activity performed by
the subject. This field is represented as a string con-
taining a predicate:complement statement. For ex-
ample, valid entries for the What field are: attend-
ing:Computer Foundation class, read:temperature = 23.

e The Where field associates a location to the fact. In
our model the location may be a physical point repre-
sented by its coordinates (longitude, latitude), a geo-
graphic region (described as a bounding box), or it can
also be a logical place. In addition, context-dependent
spatial expressions can be used for context-aware query-
ing.

e The When field associates a time or a time range to
a fact. This may be an exact time/time range (e.g.,

2008/ 07/19:09.00 am—2008/07/19:10.00 am) or a context-

dependent expression.

The way it structures and organizes information makes the
W4 data model general enough to represent data coming
from very heterogeneous sources and simple enough to pro-
mote ease of management and processing (although we are
perfectly aware that it cannot capture each and every aspect
of context, as freshness of data, reliability, access control,
ete).

3.2 Data Access

It is fundamental to define a simple API for services to ac-
cess to contextual knowledge and enabling data sources and
services to inject new data in the knowledge network layer.

Knowledge atoms are stored in the form of W4 tuples in
a shared data space (or in multiple data spaces), we took
inspiration from tuple-space approaches [1] to define the fol-
lowing API:

void inject(KnowledgeAtom a);
KnowledgeAtom[] read(KnowledgeAtom a);

The inject operation is equivalent to a tuple space SSoutSS
operation: an agent accesses the shared data space to store
a W4 tuple there.

The read operation is used to retrieve tuples from the data
space via querying. A query is represented in its turn as
a W4 tuple with some unspecified or only partly specified
values (i.e., a template tuple). Upon invocation, the read op-
eration triggers a pattern-matching procedure between the
template and the W4 tuples that already populate the data
space. In any case, pattern-matching operations work rather
differently from the traditional tuple space model and may
exploit differentiated mechanisms for the various W4 fields.

3.3 Data Generation
In the W4 model, we rely on the reasonable assumption that
software drivers (or, more in general, software agents) are

associated with data sources and are in charge of creating
W4 tuples and inserting them in some sorts of shared data
spaces. In the end, any data source must be somehow asso-
ciated with some software agent/driver to gather and store
data items, W4 agents have the additional goal of collecting
all the necessary information to produce a W4 tuple which is
as accurate and complete as possible. This occurs by sensing
and inferring information from all the devices and sources
available (e.g., RFID tags, GPS devices, Web services), and
by combining them in a W4 tuple.

The following simple examples may clarify this concept. Let
us assume Gabriella is walking in the campus park. Agents
running on her GPS-equipped PDA| can periodically create
the following tuple:

WHO user:Gabriella
WHAT walk:4km/h

WHERE lonY, latX

WHEN 2006/10/17:10.59am

Where the who is entered implicitly by the user at the login,
what and where can be derived by the GPS (e.g., the speed
of Gabriella as measured by the GPS can be used to de-
duce that she is walking), when can be provided both by the
PDA or by the GPS. Viewing this from a different, more fine-
grained perspective, we can imagine that one agent control-
ling the user profile can create a raw W4 tuple in which only
the who and where are specified; another agent controlling
the GPS agent create a tuple in which only where and what
(i.e., the speed) are specified. Accordingly, the merging of
these two raw W4 atoms into the complete one represented
below can be considered as an action of “knowledge network-
ing” that produces a more complete and expressive informa-
tion. Merging and inferencing from W4 data atoms in order
to generate higher-level Knowledge is the general idea that
is behind the concept Knowledge networks, indeed this data
generation process is generalized in the knowledge networks
approach described in Section 4. It as to be point out that
both W4 data atom describing raw data and W4 atom de-
scribing high-level knowledge generated by some reasoning
process (as result of the self-organizing process we describe
in Section 4) are accessed in the same way as knowledge
networking processes are completely transparent to services
that exploit such data.

4. THE W4 KNOWLEDGE NETWORKS

Although pattern-matching techniques proved rather flexi-
ble to retrieve context information, our idea is to exploit the
W4 structure to access the context repository in a more so-
phisticated and flexible way. More specifically, we propose
general-purpose mechanisms and policies to link together
knowledge atoms, and thus form W4 knowledge networks in
which it will be possible to navigate from a W4 tuple to the
others. Our idea is that, by querying such a knowledge net-
work instead of a flat W4 tuple space, one can obtain much
higher knowledge, as resulting from the analysis, manipula-
tion and inference upon the link structure of the knowledge
network.

In particular, new information could be produced by navi-
gating the knowledge network and combining and aggregat-
ing existing information into new knowledge atoms likewise

to the knowledge generation process introduced in Section
3.3. Such new knowledge could also arise from the analysis
of the historical context (e.g., the location where a person
spends 8h every day could be his workplace) or from a wide
analysis over the wholeW4 repository (e.g., If nobody go to
work on 2007/12/25, it could be an holiday).

4.1 W4 Relations

The W4 knowledge networks approach is based on the con-
sideration that a relationship between knowledge atoms can
be detected by a relationship (a pattern-matching) between
the information contained in the atoms fields. In particu-
lar, for the W4 model, we can identify two types of pattern
matching correlations between knowledge atoms:

e Same value — same field: We can link together W4 tu-
ples belonging to the same user, about the same place,
activity or time (or, more in general, those W4 tuples
in which the values in the same field match according
to some pattern-matching function). Matching two or
more same value — same field relationships, we can
render complex concepts related to groups of W4 tu-
ples, e.g. All students (same subject) who are attending
a class (same activity) at the same room (same loca-
tion).g

e Same value — different field: We can link atoms in
which the same information appears in different fields.
This kind of pattern matching can be used for aug-
menting the expressive level of the information con-
tained in the W4 tuples. For example, a knowledge
atom having When: 18/09/2008 can be linked with
another atom like Who: Fall Class Begin , When:
18/09/2008 to add semantic information to that date.

Table 1 summarizes the basic relationships between knowl-
edge atoms. On the principal diagonal, it is represented the
“same value-same field” pattern matching. By reading the
table by columns, it is possible to find all relationships be-
tween one particular atom with all other atoms in a knowl-
edge network. For example, looking at the first column on
the left, we are comparing all atoms with the same subject.
The first cell is on the diagonal, so it is a “same value-same
field” pattern matching. The 2nd row, 1st column cell iden-
tifies all atoms containing the different activities performed
by the same subject. Then we have all atoms containing the
different locations where the same subject has been, the last
cell is a particular case: all atoms generated for the same
user.

This network of correlation between atoms may be used as
the basis for more elaborated inference and reasoning upon
knowledge network, i.e., for identifying and creating links be-
tween W4 atoms and for eventually creating new W4 knowl-
edge atoms.

The following example illustrates the the process of discov-

ering new knowledge. Let’s suppose that Gabriella’s PDA
at a certain time generates the following tuple:

WHO user:Gabriella

who what where when
who Same subject All subject who per- Atom describing an in- Atom describing a logi-
formed a particular ac- door location cal time
tivity
what Different activity per- Same activity All activities performed All activity performed
formed by the same sub- in the same location at the same time
ject
where All locations in which a All location in which an Same location All location occupied at
subject has been activity has been per- the same time
formed
when Same subject-different All times in which an All times in which an Same time
time: a living diary activity has been per- activity has been per-
formed formed
Table 1: Relations between the fields of the W4 Knowledge atoms.
WHAT * WHO: user:Gabriella WHO:class: ComputerScience
WHERE room:room_35 WERT: WHAT: *

WHEN 2009/10/17 10.05am

Algorithms in the system continuously analyze the data spaces,

find a lot of correlation and organize them in multiple knowl-
edge networks. For instance there is an agent that is in
charge of building a knowledge network about Gabriella, i.e.
a knowledge network whose W4 representation is the follow-
ing one:

WHO user:Gabriella
WHAT *
WHERE *
WHEN *

This specific knowledge network can be considered as a knowl-
edge view, the view about all information generated by the

user Gabriella. Another agent is in charge of building a

knowledge network about room 35, i.e. a knowledge net-

work whose W4 representation is the following one:

WHO *
WHAT *
WHERE room:room35

WHEN *

This represents the knowledge view related to the room 35.
The previous two knowledge views intersects whenever a tu-
ple generated by user Gabriella and placed in room 35 is
retrieved.

Let’s now assume an agent finds a correlation with an atom
describing what is happening in the current time in room
35, where Gabriella is at the moment. A new atom carrying
higher-level logical information may be created, such atom
states that Gabriella is attending the Computer Science class
(see Figure 3).

This example gathers that two distinct processes are re-
quired in order to have the knowledge networks working:
a knowledge linking process, in which knowledge views are
built and maintained, and a knowledge generation process
which exploits the knowledge views to generate new W4

WHERE: room:room_35
WHEN: 2009/10/17 10.05am

WHERE: room:room_ 35
WHEN: 2009/10/17 10.00-11.00am

WHO: user:Gabriella

WHAT: attending:ComputerScience
WHERE: room:room 35

WHEN: 2009/10/17 10.05am

Figure 3: W4 knowledge network data inference

atoms carrying higher-level information. In the next Sec-
tion, the self-organized approach that drives the generation
of the knowledge networks is presented.

4.2 The Self-Organizing Approach

A self-organizing approach to generate and maintain the
knowledge networks’ layer is clearly required by the decen-
tralized nature of pervasive computing systems and the over-
whelming amount of generated data, which prevent the use
of a centralized process for data management. The proposed
approach is based on self-organizing multi-agents system to
adaptively build and maintain the knowledge networks.

To this end, we adopt an algorithmic approach which re-
lies on a two-phase process: a knowledge linking generation
phase in which related knowledge atoms are linked together,
and a knowledge generation phase in which new w4 atoms
are generated.

The first phase is the identification of all possible correla-
tions between knowledge atoms (according to Table 1), and
the creation of link between W4 atoms. This can be done
by a number of agents (we call spider as they weave their
webs between correlated tuples), in charge of identifying re-
lationships between tuples. Each spider is responsible for
a single relationship over W fields (E.g., the agent Al is in
charge of linking together all the tuples with the who field
equals to “user:Gabriella”, the agent A100 is in charge of
linking together all the tuples in which the where field fulfill
the relation “in building:CS_building”, etc.). Spiders con-
tinuously surf W4 Tuple Spaces in order to retrieve tuples
that fulfill the specific relationship, those tuples are virtually

linked together thus creating a W4 knowledge network for
the given relationship. Obviously spiders must be capable
of analyzing W4 Tuples stored in different tuple spaces and
building correlation networks that extends over distributed
tuple spaces. The spiders’ algorithm follows:

define:
spider_rel;
knet;

Main:
Do forever:
TS = choose_Random_TS();
last_Knet_Ref = Analize_TS(TS, last_Knet_Ref);
Done;

Analize_TS(current_TS, last_Knet_Ref){
tuples_inRel[] = current_TS.read[spider_rel];
/*non destructive read
if (tuples_inRel NOT null){

Add_to_Knet (knet, tuples_inRel);
return current_TS;
}
else
return last_Knet_Ref;

The spider chooses a random Tuple Space and checks if any
tuple in the Tuple Space fulfills the spider_rel relationship.
If it is positive the tuples are added to the knowledge net-
work knet by adding a reference to the last Tuple Space that
was found earlier, i.e. drawing a link between the last TS
added to the knowledge network spider_rel and the current
one. This process continuously repeats. In this way, a sin-
gle knowledge network of links between correlated tuples is
generated. More spiders can work concurrently, building the
knowledge networks layer in a self-organizing fashion.

The second step is the generation of new knowledge atoms,
by analyzing which of the identified link can lead to a new
W4 atom as a process of merging related atoms. This is per-
formed by another type of agents, called browser because
they are capable of browsing the knowledge networks try-
ing to generate new W4 atoms. Each browser is capable
of inferencing a specific type of relationship. The browsers’
algorithm follows:

define:
browser_rel;
/* the relation that the browser is cable to infer

Main:
Do forever:
TS = choose_a_random_TS;
t = choose_a_ramdom_tuple (TS);
Generate_New_Knowledge (t);
Done;

Generate_New_Knowledge (t){
For each (Knet(t)):
ti = get_Next_Tuple (Kneti, t);
if (isInfereable (t, ti) IS true){
new_tuple = inference (t, ti);
add (new_tuple);
}

The browser chooses a random tuple ¢ in the system, and
locates all the knowledge networks in which the tuple ¢ is in-
volved. Then the browser start to browse each of the found
knowledge networks. For each tuple ti found in a related
knowledge networks, the browser checks if he is able of gen-
erate a new w4 atom carrying higher knowledge. If posi-
tive, the new atom is generated and added to the current
tuple space. This generation process is not a trivial issue
as the W4 Knowledge Network approachs can produce an
overwhelming amount of inferred data, as discussed in [5],
[6]. Indeed in [6] we proposed a self-organizing approach
to let the system self-organize the knowledge generation in
response to knowledge queries being made.

Nevertheless, even when new data are not generated, the
Knowledge networks of links between atoms can be fruitfully
used during the query resolution phase in order to retrieve
tuples more efficiently. When a query is submitted to the
W4 Tuple Space System, a query-solving agent capable of
browsing knowledge networks, i.e. a browser, analyze the
query template and determine one or more knowledge net-
works to which the matching tuples should belong. Then
the browser agent choose a random W4 tuple space in the
System and scans it until he finds an entry point for one
of the identified knowledge networks, i.e. a tuple belonging
to one of those knowledge networks. When the entry point
is found, the agent starts to jump from the entry point tu-
ple to the other tuples in the identified knowledge network,
checking if they matches the template and finally returns
the retrieved tuples. This is beneficial for services because
fewer read operations have to be performed when exploiting
knowledge networks instead of a flat data space.

In the following Section we discuss simulation results that
validate the Knowledge Networks approach when used to
answer complex queries.

5. EVALUATION

In order to evaluate the proposed approach, we conducted
some experiments to determine how the services improve
their data access costs exploiting the w4 knowledge networks
infrastructure instead of accessing isolated pieces of informa-
tion.

We considered the scenario introduced in Section 2 and sim-
ulated a distributed campus where W4 tuples are generated
by users and inserted in multiple tuple spaces. While the
tuple generation is simulated, a prototype of the w4 sys-
tems has been realized, there a multitude of spiders explore
the systems building networks of correlations as described
in Section 4, while browsers are in charge of browsing the
correlations’ networks to answer queries submitted to the
system.

We developed a W4 tuple space implementation on top of
LighTS Tuple Space [2], a lightweight tuple space framework
highly customizable and particularly suitable for context-
aware operation over data. W4 tuple spaces contain W4
Tuples formatted accordingly to the W4 Data Model and
implement the various context-aware matching operations
already introduced. The W4 tuple spaces also include the
implementation of spiders and browsers able to build and
exploit the w4 knowledge networks.

Data stored in the W4 tuple spaces’ system come from the
simulated environment. We built a virtual environment based
on the Repast framework [http://repast.sourceforge.net/],
an agent based simulation toolkit allowing flexible control
over model parameters. We represented a location with 2D
coordinates and a number of users each moving in the envi-
ronment. At the beginning of the simulation the position of
each user is randomly determined, a random destination is
also set for each user in order to make the simulation more
realistic. Periodically a W4 tuple for each user is generated
based on the current position and the current time (the what
field is randomly chosen in a pool of pre-defined activities).
The virtual environment is split in 100 zones, each of this
zone holds a private W4 tuple space that stores all the tuples
generated in its reference zone. When a user moves between
the zones in the virtual environment, it always knows its
position and the corresponding reference zone in this way
generated tuples are injected in the correct tuple space.

In this scenario many tuples are stored in the w4 tuple
spaces, and services many find hard to access those data.
We performed some experiments to measure how services
may have benefits by accessing w4 knowledge networks. We
submitted a complex query to the w4 system, and made it
solved by browser agents that are capable of browsing w4
knowledge networks as explained in Section 4.

We submitted to the system the following complex query:
“Retrieve all the users that were near agent A5 was, on time
500”. For a W4 System this means the following two queries
should be subsequently resolved:

WHO user:A5
WHAT *

WHERE *

WHEN 500

Please note that the when field is automatically transformed
in a time interval. Let’s now suppose we find that agent A5
is in “125, 300” position, so the second query looks as follow:

WHO *

WHAT *

WHERE 125, 300
WHEN 500

Here both the where is automatically considered as a bound-
ing box and the when field is automatically transformed in
a time interval.

On this simulated environment, we compared the W4 Tuple
Space System with the Exhaustive Search in Tuple Spaces
and with Hash based Tuple Spaces based on the performance
of the above system when the non destructive query that we
have already introduced is submitted to the system.

The Exhaustive Search is performed on a Tuple Space that
embeds the W4 Data Model facilities but not the W4 knowl-
edge networks mechanisms. When a query is submitted to
this simplified W4 tuple space system, a query agent chose
a random tuple space in the system and scans it seeking for
the w4 tuples that fulfill the query template. Then a ran-
dom Tuple Space is chosen again, until the whole system is
scanned.

Hash based Tuple Space is a well known and popular tech-
nique for data indexing in distributed environment. Here we
follow an approach similar to [13] in which a single field of
the tuple structure is used for the hashing operation and in-
dexing purpose. When a tuple is injected in the distributed
system, the hashing operation is performed over the desig-
nated field and the tuple is then stored on the resulting tuple
space. Then when a query is submitted to the system, the
same hashing operation is performed on the query template
and the result indicates the tuple space to scan for results.
However in the W4 Data Model one or more fields of a w4
tuple may be left empty, if the information is not known.
In the case the field to be used for the hashing operation is
empty, the tuple will be stored in a specific tuple space. In
this simulations we considered two cases: hash performed
on the who fields and hash performed on the where fields.
In the first case, the hash function works on the who field
considering the type:value string. In the latter case the hash-
ing function works as a proximity function and the current
coordinates submitted are aggregated in 100 zones.

Number of visited Tuple Spaces

180

140
120

100

&0

60

g

40

20 — —i ~

Number oftuple spaces

1000 3000 5000

Numberoftuples in the system
—+Hash (who)

——Hash (where)

-#-\W4 simulation
Exhaustive search

Figure 4: Number of view operations done by query-
solving agents.

Number of Data View Operations
€000 /.

5000

4000

2000

2000

1000

Pl
.
::::__.—-—'_"_‘—ﬁ

1000 3000 5000

Number of data view operation

Numberoftuples in the system

-=-Exhaustive search
—~Hash (where)

—+W4 simulation
Hash (who)

Figure 5: Number of view operations done by query
agents

We run the simulations 10 times and depicted the average
values. Figure 4 shows the number of tuple spaces visited

by the query-solving agent in the considered systems. The
W4 Tuple Space Systems performs further better the the
Exhaustive Search and better enough than the Hash based
System. Indeed, in the medium case, the Exhaustive Search
has to query half the number of Tuple Spaces in the system
to solve the first sub-query and the whole number of the Tu-
ple Spaces to solve the second ones. The Hash approaches
work better than the Exhaustive query because one of the
sub-query is solved thanks to the hashing operation, never-
theless the other sub-query have to be solved traditional as
in the case of the Exhaustive Search. However exploiting
the W4 Knowledge Networks is even better because, one
the browser finds the knowledge networks that should be
browsed in order to solve the query, the number of tuple
spaces accessed is determined by the number of tuple spaces
involved in the knowledge networks of interest.

Figure 5 shows the number of read operation performed.
Also in this case the W4 Tuple Space System performs bet-
ter then the other systems. As in the previous case, the
Exhaustive Search have to access half the number of tuples
in the systems ro solve the first sub-query, and all the tu-
ples in the system to solve the second sub-query. Here we
can see that the performance in the Hash based systems are
significantly different depending if the hashing is performed
on the who field or on the where field. The W4 System per-
forms however better because all the fields are considered
important the same when building knowledge networks.

Experimental results show that accessing pre-organized W4
Knowledge Networks instead of a flat Tuple Space System or
a hash-based Tuple Space System greatly improves the sys-
tem performance in terms of number of data view operations
and number of Tuple Spaces accessed. In order to test the

Number of visited Tuple Spaces

-

€ 20 I<:

g =

@ 15

: ——(a)

2 10

s 5 —&— (b}

2

E 0 : .

z 1000 3000 5000

time (ticks)
Number of data view operation

, 1200

& 1000 il

E goo ’;:—”4

g s = ——(a)
3,

§ e = —=—(b)

£ 200 !7

= o

(-]

i 1000 3000 5000

5 time [ticks)

=

Figure 6: Scalability test. In (b) the simulated area
is doubled than in (a), while the population density
is the same.

scalability of our approach we performed some preliminary

test (see Figure 6), simulating a wider environment (exten-
sion doubled than the previous one) with the same popula-
tion density of the previous one. The results are shown in
Figure 6. (a) is the first environment we simulated, (b) is a
second environment with doubled extension. We run both
the simulation for a while and measured how the systems
perform when submitting the query presented at the begin-
ning of this section. The figures shows that the system scale
quite well. One should note that in (b) the number of tuple
spaces in the system and the number of generated tuples
increases. In particular (a) accounts for 100 Tuple Spaces
and (b) for 150. However, given that the number of Tuple
Spaces in the system increases by 0,5 factor, we have that
the number of accessed Tuple Space does not increase sig-
nificantly, this is due to the fact the number of tuple spaces
involved in the knowledge networks related to the query per-
formed almost does not increase. Instead when considering
the number of accessed tuple, we must note that the num-
ber of tuple in the system greatly increase in (b) and this
motivate why the number of tuple accessed in (b) respect to
(a), this implies that also knowledge networks account for
more tuples.

However, the generation of Overlay Networks never comes
without overhead costs. The idea behind W4 Knowledge
Networks, as already stated in Section 4, is to pre-organize
data in a fashion that will be useful for a number of services
and will decrease delay experiences by services. In order
to keep Knowledge Networks feasible and manageable one
should find a good trade-off between the number of knowl-
edge networks to be build in the system and overhead costs
associated, in general only knowledge networks that might
be useful (i.e., accessed by agents) should be built and main-
tained. An approach that goes in this direction is the one
presented in [6]. Another factor to be considered is the num-
ber of agents that are involved in Knowledge Networks’ gen-
eration and maintenance. Having multiple agents collabo-
rating for a single Knowledge Network, this would decrease
the knowledge networks’ generation time and would allow
the knowledge network to be promptly updated but, once
again, this increases the overhead.

6. RELATED WORK

Context is a very fluid notion, although several researchers
claim that it is very hard to abstract it in terms of variables
and data models [19], it is also a widespread opinion that a
more pragmatic perspective should be adopted. Early works
in this area, as from Schmidt et al. [24] and Dey et al. [8],
concentrates on the issue of acquiring context data from sen-
sors and of the processing such data but they generally miss
in identifying a uniform model to describe the data. A dif-
ferent thread of researchers [11] focuses more on the issue of
providing rich data models for contextual information and
of facilitating querying by services. However, this does not
go toward simplicity and generality, which we instead feel
should both be goals. Some recent proposals, such as [25,
3] focus on providing models for contextual data that adopt
a uniform well-defined structure. Indeed, our W4 proposal
accounts for a very similar structuring for contextual infor-
mation, and enriches it further with a well-defined API, and
with the possibility of linking data atoms and of providing
application-specific views to services.

An increasing number of research works get inspiration from
tuple space data models [1] and propose representing con-
textual information in the form of tuples. Egospaces [14]
adopts this perspective, without committing to a specific
pre-defined structure for context tuple, which can make it
difficult for services to uniformly deal with tuples repre-
sented in different formats. Other proposal, such as The
Context Fabric model [12] rely on well-structured context tu-
ples. Recent proposals focusing on sensor networks, suggest
exploiting a tuple-based approach to provide application-
specific views on sensorial data [18]. In general we consider
tuple-based approaches very suitable for organizing and ac-
cessing contextual information, but we also think that there
is need of more structuring and flexibility than those exhib-
ited by the existing approaches.

However, in the previous work, the issue of relating contex-
tual data atoms with each other and of providing different
views to different applications is not generally addressed.
More recently, other proposals have adopted a similar en-
deavor but have considered the issue of adopting specific
ontologies to model context information and enable U other
than efficient querying U also efficient context-reasoning [22,
15]. Although such approaches tend to be too application-
specific, they attribute the importance of linking indepen-
dent atoms of contextual information (with ontological re-
lations) and of reasoning not only on individual data items
but also on their relations, an idea which is fully shared by
our knowledge network vision.

Some recent proposals go beyond context modeling and rep-
resenting and start consider also context reasoning, i.e. con-
sidering related piece of information for generating new knowl-
edge as w4 knowledge networks do. Many works, such as
and [21], are focused on situation learning and situation re-
lationships in smart environment. Other works, such as [20]
propose predicate logic as an effective language for context-
aware reasoning. The Knowledge Networks approach we
propose aim to be more general and propose an approach
different from traditional ones, considering self-organizing
agents. [4] considers the possibility of extracting higher-
level knowledge from raw sensed data merging feature vec-
tors in an opportunistic fashion for people-centric applica-
tion. The idea of merging and considering data coming from
diverse sources is shared with the w4 knowledge networks
approach. However in the W4 Approach we go further con-
sidering multiple knowledge views that can be accessed by
multiple services. In [23] the context management processes
is performed by BDI agents that generate and administrate
the context artifacts at run time. We share with [23] the
idea of a middleware responsible for contextual data, but
we also argue overwhelming amounts of data require novel
approaches for data management, such as bio-inspired and
self-organizing ones.

Also other areas of research contributed towards the real-
ization of our knowledge networks vision, in particular data
mining and pattern discovery and granular computing. Data
mining [9] always come to play when dealing with an over-
whelming amount of data to be analyzed, indeed the analy-
sis task performed by the knowledge networks layer can be
considered as a sort of data mining process. Also Granular
Computing [26] is of interest, indeed w4 knowledge atoms

can be seen as information granules, providing knowledge at
different scales.

7. CONCLUSIONS AND FUTURE WORK

Pervasive computing devices can generate an overwhelming
amount of data related to facts occurring in the physical
and social world. Making such data effectively available to
services requires proper solution to represent data, pruning
and organizing into application-specific views on contextual
knowledge. In this paper, after having discussed the above
issues, we presented the W4 Approach as an effective solu-
tion to represent contextual data and organize them in dis-
tributed knowledge networks. We proposed a self-organized
mechanism capable of analyze the data and organize them in
multiple views usable by pervasive services. We have shown
experimental results to support our proposal.

Despite the promising results achieved so far in the study of
the W4 model, several research issues still have to be faced.
The Knowledge Networks approved showed useful, however
more experiments should be done to evaluate properly the
generation and maintenance overhead, as introduced in Sec-
tion 5. Moreover, in the current implementation of the W4
System, the number of tuples stored in the system is con-
stantly increasing as new data are injected in the system.
The more knowledge atoms are stored, the more will be the
overhead on the the knowledge network level. There is the
need for a "garbage collection” solution, we plan to experi-
ment with a concept of knowledge tuple fading as introduced
in [17].

8. ACKNOLEDGEMENTS
Work supported by MIUR under the project PRIN 2007
?Analisi e controllo di fenomeni franosi attraverso sistemi
di monitoraggio wireless e airborne” (Wireless and Airborne
Monitoring of Landslide phenomena).

9. REFERENCES

[1] S. Ahuja, N. Carriero, and D. Gelernter. Linda and
friends. Computer, 19(8-9):26-34, 1986.

[2] D. Balzarotti, P. Costa, and G. P. Picco. The lights
tuple space framework and its customization for
context-aware applications. International Journal on
Web Intelligence and Agent Systems, 50(1-2):36-50,
2007.

[3] J. Bravo, R. Hervés, I. Sdnchez, G. Chavira, and
S. Nava. Visualization services in a conference context:
An approach by rfid technology. Journal of Universal
Computer Science, 12(3):270-283, 2006.

[4] A. Campbell, S. Eisenman, N. Lane, E. Miluzzo,

R. Peterson, H. Lu, X. Zheng, M. Musolesi, K. Fodor,
and G.-S. Ahn. The rise of people-centric sensing.
Internet Computing, IEEE, 12(4):12-21, July-Aug.
2008.

[5] G. Castelli, M. Mamei, and F. Zambonelli.
Engineering contextual knowledge for autonomic
pervasive services. International Journal of
Information and Software Technology,
52(8-9):443-460, 2008.

[6] G. Castelli, R. Menezes, and F. Zambonelli.
Self-organized control of knowledge generation in

[21]

pervasive computing systems. ACM Symposium on
Applaied Computing, 2009, 8-12 March 2009.

G. Castelli, A. Rosi, M. Mamei, and F. Zambonelli. A
simple model and infrastructure for context-aware
browsing of the world. Pervasive Computing and
Communications, 2007., pages 229-238, 19-23 March
2007.

A. K. Dey, G. D. Abowd, and D. Salber. A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications.
HumanUComputer Interaction, 16(2):97-166, 2001.
J. Galloway and S. J. Simoff. Network data mining:
methods and techniques for discovering deep linkage
between attributes. In APCCM ’06: Proceedings of the
8rd Asia-Pacific conference on Conceptual modelling,
pages 21-32, Darlinghurst, Australia, Australia, 2006.
Australian Computer Society, Inc.

K. Henricksen and J. Indulska. Developing
context-aware pervasive computing applications:
models and approach. Pervasive and Mobile
Computing, In, 2:2005, 2005.

K. Henricksen and J. Indulska. Developing
context-aware pervasive computing applications:
models and approach. Pervasive and Mobile
Computing, 2, 2005.

J. I. Hong. The context fabric: an infrastructure for
context-aware computing. CHI ’02 extended abstracts
on Human factors in computing systems, pages
554-555, 2002.

Y. Jiang, G. Xue, Z. Jia, and J. You. Dtuples: A
distributed hash table based tuple space service for
distributed coordination. Grid and Cooperative
Computing, 2006, pages 101-106, October 2006.

C. Julien and G.-C. Roman. Egospaces: facilitating
rapid development of context-aware mobile
applications. Software Engineering, IEEE
Transactions on, 32(5):281-298, 2006.

D. Lee and R. Meier. Primary-context model and
ontology: A combined approach for pervasive
transportation services. Pervasive Computing and
Communications Workshops, 2007. PerCom
Workshops ’07. Fifth Annual IEEE International
Conference on, pages 419-424, 2007.

F. Z. M. Baumgarten N. Bicocchi, M. Mulvenna.
Selforganizing knowledge networks for smart world
infrastructures. In International Conference on
Self-organization in Multiagent Systems, 2006.

R. Menezes and A. Wood. The fading concept in
tuple-space systems. In Proceedings of the 2006 ACM
Symposium on Applied Computing, pages 440-444,
Dijon, France, 2006. ACM, ACM Press.

L. Mottola and G. P. Picco. Logical neighborhoods: A
programming abstraction for wireless sensor networks.
In Proc. of the the 2 nd Int. Conf. on Distributed
Computing on Sensor Systems (DCOSS), 2006.

D. Paul. What we talk when we talk about context.
Personal and Ubiquitous Computing, 8, 2004.

A. Ranganathan and R. H. Campbell. An
infrastructure for context-awareness based on first
order logic. Personal Ubiquitous Comput.,
7(6):353-364, December 2003.

P. Reignier, O. Brdiczka, D. Vaufreydaz, J. L.

(22]

23]

[24]

(25]

(26]

Crowley, and J. Maisonnasse. Context-aware
environments: from specification to implementation,
2007. IN PRESS.

I. Roussaki, M. Strimpakou, N. Kalatzis,

M. Anagnostou, and C. Pils. Hybrid context modeling:
A location-based scheme using ontologies. Pervasive
Computing and Communications Workshops, IEEE
International Conference on, (1):2-7, 2006.

I. Salomie, T. Cioara, I. Anghel, and M. Dinsoreanu.
Rap - a basic context awareness model. Intelligent
Computer Communication and Processing, 2008.
ICCP 2008. 4th International Conference on, pages
315-318, 2008.

A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela,
K. V. Laerhoven, and W. V. d. Velde. Advanced
interaction in context. Proceedings of the 1st
international symposium on Handheld and Ubiquitous
Computing, 8, 1999.

C. Xu and S. C. Cheung. Inconsistency detection and
resolution for context-aware middleware support.
Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software
engineering, pages 336-345, 2005.

Y. Yao. Three perspectives of granular computing.
Journal of Nanchang Institute of Technology,
25(2):16-21, 2006.

