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ABSTRACT

This paper describes the theoretic issues and the design of an imple-
mented Multiagent System developed by DISI, the Computer Sci-
ence Department of the University of Genova, and Ansaldo-STS,
the Italian leader in design and construction of signalling and au-
tomation systems for conventional and high speed railway lines.
The problem discussed in this paper is a multiagent resource allo-
cation problem where resources are modeled as nodes in a directed,
non-planar graph that agents must traverse from one start point to
one end point.

The goal of the multiagent system is to find a feasible allocation
of resources to agents over time that emerges as the result of a se-
quence of local negotiation steps.

The multiagent system has been implemented using JADE and ex-
ploits the JADE Web Services Integration Gateway to access legacy
applications developed by Ansaldo-STS. It has already been tested
on real data and will be integrated into one of Ansaldo-STS’s core
business applications in a few months.

Categories and Subject Descriptors
1.2.11 [Distributed Artificial Intelligence]: Intelligent agents, Mul-
tiagent systems

Keywords
Multiagent Resource Allocation, Industrial Application of MAS

1. INTRODUCTION

This paper describes the theoretic issues and the design of an imple-
mented Multiagent System (MAS) developed by DISI and Ansaldo-
STS. DISI (Dipartimento di Informatica e Scienze dell’Informazio-
ne) is the Computer Science Department of the University of Gen-
ova, IT. Ansaldo-STS is the Italian leader in design and construc-
tion of signalling and automation systems for conventional and high
speed railway lines.

The real application for which the MAS has been developed is pro-
tected by a Non Disclosure Agreement. Thus, in this paper we pro-
vide a generalization of the problem that we addressed, we show
how the complexity of this problem can be profitably faced follow-
ing an agent-oriented approach, and we discuss the design of the
developed MAS maintaining our description at the right level of
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abstraction. We provide some examples of the negotiation algo-
rithm that we have developed and we discuss some tests we run.

The problem that the agents in our MAS solve is a classical Multi-
agent Resource Allocation (MARA) problem. As stated by [2],

Multiagent Resource Allocation is the process of dis-
tributing a number of items amongst a number of agents.

The features of our MARA scenario are the following:

1. Resources are non-sharable, indivisible, and may be assigned
to different agents in different and non intersecting time slots.

2. Agents have preferences on the bundle of resources they re-
ceive.

3. There is no single entity that decides on the final allocation
of resources amongst agents, as in combinatorial auctions
where the central entity is the auctioneer and the reporting
of preferences takes the form of bidding. Instead, in our sce-
nario allocations emerge as the result of a sequence of local
negotiation steps.

4. The scenario is highly dynamic: resources may become un-
available because they break up, they may become available
again because they have been fixed, and agents may enter and
exit the system in any moment.

5. The objective of the negotiation is to find a feasible alloca-
tion. There are no requirements on the optimality of the so-
lution which would contrast, in most cases, with the need of
finding an allocation in a limited and pre-defined amount of
time.

As demonstrated by hundreds of publications on MARA [2, 5, 6],
many proposals already exist that might seem suitable to the fea-
tures of our scenario. However, we were not able to find in the liter-
ature the right algorithm for solving exactly our problem. Many al-
gorithms similar to the one discussed in this paper exist, but chang-
ing even only one assumption, requirement or constraint, leads to
very different results. Thus, an algorithm “similar” but not identical
to the one we needed, was not suitable for our purposes.

Also, we developed the MAS having a real application in mind.
We could not neglect all the constraints on the software environ-
ment where our MAS would be integrated. Even if we had found



a description of the algorithm that would solve all our problems in
some paper, we still had to cope with implementation issues, since,
to the best of our knowledge, no negotiation algorithm similar to the
one we needed is available to the research community as a source
code.

For these reasons we decided to design and implement our own
negotiation algorithm, even if we knew that its originality might be
limited due to the large amount of literature on the topic.

At this point in time, the MAS implementation is almost complete;
there are Interface Agents that correctly access services provided
by legacy applications implemented by Ansaldo-STS and running
outside the MAS, and the MAS has been successfully tested on real
data. Some minor details of the behavior of the other types agents
running in the MAS are still under refinement. The MAS has been
implemented using JADE [1] and the legacy applications that is ac-
cesses expose their functionalities as Web Services integrated into
JADE by means of the JADE Web Services Integration Gateway,
WSIG [3]. In a few months the MAS will be integrated into the
software module for which it has been developed. Then, the MAS
will start working at a cracking pace.

The value of the research experience that we describe in this paper
mainly consists in providing further support to what we stated in
our WOA 2008 paper, talking about one previous (and definitely
less challenging) joint project involving DISI and Ansaldo-STS [4]:

The role of academia in providing a good support dur-
ing the design and implementation of MASs for real
applications is a key factor in the take-off of the agent
technology, and the joint DISI — Ansaldo-STS project
discussed in this paper represents a success story in
this direction.

Thus, this paper reports another story on fruitful collaborations be-
tween university and industry.

The paper is organised in the following way: Section 2 provides a
mathematical model of the problem; Section 3 describes how we
reduced the mathematical problem to a MARA problem; Section
4 describes the allocation algorithm in detail; Section 5 illustrates
how our negotiation algorithm works by means of two examples;
Section 6 concludes and highlights some future directions for our
work.

2. THE DYNAMIC RESOURCE ALLOCA-
TION PROBLEM

The problem consists of

e A set of indivisible resources that must be assigned to differ-
ent entities in different time slots (each resource can be used
by only one entity in each time slot).

e A set of entities with different priorities, each needing to use
some of the available resources for one or more time slots;
entities have preferences over the set of resources they can
obtain.

e A directed graph of dependencies among resources: an en-
tity can start using resource R only if it used exactly one re-

source from {R1, R2, ..., Rn} in the previous time slot (we
represent these dependencies as arcs R1 — R, R2 — R, ...,
R, — R in the graph).

e A set of resources named “‘start points” that can be assigned
to entities without requiring the prior usage of other resources
(no arc enters in the corresponding node).

e A set of resources named “end points” that, once assigned to
one entity, allow the entity to complete its job (no arc exits
from the corresponding node).

e A set of couples of conflicting arcs in the graph of depen-
dencies: an entity releasing R for accessing Rz, where the
usage of Ry depends on the previous usage of R;, might
conflict with an entity releasing R3 for accessing R4. The
two entities might indeed need to use the same transportation
means for accessing R from R; and R4 from R3 respec-
tively, and the transportation means might be non sharable as
well.

e A static allocation plan that assigns resources to entities for
pre-defined time slots, in such a way that no conflicts arise.

In an ideal world where resources never go out of order and where
any entity in the system can always access the resources assigned
to it by the static allocation plan, no problems arise.

In the real world where entities happen to use resources for longer
than planned and where resources can break up, a dynamic re-
allocation of resources over time is often required. Thus, the so-
lution of the real world problem is a dynamic re-allocation of the
resources to the entities such that:

1. the re-allocation is feasible, namely free of conflicts; in our
scenario, conflicts may arise both because two or more en-
tities would want to access the same resource in the same
time slot, and because two or more entities would want to
use conflicting arcs in the same time slot;

2. the re-allocation task, whose output is either a feasible re-
allocation or a message stating that no feasible re-allocations
exist, is completed within a pre-defined amount of time;

3. each entity minimizes the changes between its new plan and
its static allocation plan: the start and end point must al-
ways remain those stated in the static allocation plan, but
the nodes in between may change, as well as the time slots
during which resources are used;

4. each entity minimizes the delay in which it reaches the end
point with respect to its static allocation plan;

5. the number of entities and resources involved in the re-allocation

process is kept to the minimum;

6. in case no feasible re-allocation exists, the algorithm stops.

Goals 3 and 4 are local to the entities, whereas goal 5 is a global
one. Achieving these three goals together is often impossible since
the best re-allocation for one entity might cause the involvement
of many other entities in the process, which contrasts with the
last goal. Also, the re-allocation process must output either some
conflict-free plan or a “no solution exists” message in a limited and
pre-defined amount of time (goal 2), for functioning requirements
of Ansaldo-STS’s application. Thus, the plan resulting from the
re-allocation problem, if any, may be sub-optimal.



2.1 A Model for the Problem

We modeled the problem as a directed and non-planar graph that
entities must traverse from one start point to one end point. Nodes
in the graph are labeled by resources' whereas arcs represent de-
pendencies among them. We adopt a discrete and linear time model.

The fact that an entity stops in a node R for a given time slot 7'S
corresponds to the usage of R during T'S by the entity. Arcs R —
R, R» — R, ..., R, — R in the graph mean that, in order for
an entity to start using R at time 7’, exactly one resource among
Ri1, Ro, ..., R, had to be used by the same entity at time 7" — 12.

When and entity traverses an arc Ry — R» it releases R; and
accesses I?2. We assume that traversing an arc always requires one
time unit. This is not true in the real application that we addressed,
where the traversal time may vary, but this simplification made the
problem easier to address. The usage of Ry — Ry during T'S
makes R; — R» and all the arcs that conflict with it, occupied for
TS.

Entities enter the graph one after the other: in any time instant 7’
there is at most one entity showing up in one start point.

In order to keep our model as general as possible, we assume that
there may be many different direct arcs connecting the same two
nodes.

Entities need to traverse the graph from one start point to one end
point. Entities can not change the start and end points established
by their static allocation plan, but they are free both to find another
path connecting these points and to modify the time slots during
which they use some resources, if the original path stated by the
static allocation plan is no longer available. The reasons that may
cause an entity to change its original static allocation plan are:

1. adelay in entering the start node with respect to the original
plan;

2. anode in the original path that is either no longer available
because the corresponding resource is out of order, or not
free in the needed time slot because another entity is using it;

3. anarc that the entity should traverse for moving from the cur-
rent node to another node, and that is not free in the needed
time slot.

Given this model, the problem to solve can be stated as:

For each entity that enters the graph from a start point
either confirm the validity of the plan stated in the
static allocation plan, or, if some unexpected event oc-
curred that makes the original plan no longer appli-
cable, find a new plan for reaching an end point of
the graph. The new plan should minimize the delay

'In the sequel, we will sometimes use “node” and “resource” inter-
changeably, identifying a node by the resource that labels it.

>The resource in the set Ry, Ra, ..., Rn might have been used by
the entity for more than one time slot, namely from7"—n to 7' — 1,
n > 1. We are not interested in what happened before 7' — 1. The
important thing is that at time 7" — 1, the entity used exactly one
resource in the set.

in which the entity exits the graph and the number
of required changes with respect to the original plan,
as well as the number of entities involved in the re-
allocation process.

3. REDUCING THE ALLOCATION PROB-
LEM TO NEGOTIATION IN A MAS

The problem described in Section 2 involves heterogeneous, au-
tonomous, self-interested and distributed entities each with a partial
knowledge of the environment where they live. Entities compete
for obtaining the control of the resources needed for completing
their job (i.e., exiting the graph), but they also need to cooperate
in order to find a new feasible allocation that respects the rules im-
posed by the system (i.e., keeping the number of entities involved
in the re-allocation as small as possible). These features make the
dynamic resource allocation problem extremely suitable for being
faced with an agent-oriented approach. Thus, we designed three
different types of agents each with its own capabilities and view of
the system:

e Resource Agents (RA): each node in the graph is managed
by one RAs in the MAS that knows the state of the node and
the state of the arcs entering in it.

e User Agents (UA): entities traversing the graph become UAs
in the MAS.

o Interface Agents (IA): agents responsible for the interac-
tions with the environment outside the MAS are named IA.

The graph becomes the environment where agents live. There is no
central control of the state of the graph, which is indeed spread all
over the RAs.

3.1 Resource Agents

Each node in the graph is managed by one RA. RAs do not take
decisions about which UA will obtain the control of the node but
keep track of the node’s state (free/occupied). RA also manage the
allocation of arcs entering the node.

UAs interact with RAs for knowing whether the node is free or
occupied in a given time slot. RAs answer the question and, in case
the node is not free, tell which UA occupies the node for the given
time slot, its priority, and when the node will become free again.

RAs also manage the allocation of the arcs incoming into the node
they control. The RA controlling node N has the list of all its
neighbors, namely those RAs controlling nodes N f,.o.m such that an
arc Nyrom — N exists. For each arc Nyy.om — N, the RA also
pogsesses the list of arcs A, ..., Ay that conflict with Nfrom —
N~.

When the RA receives a reservation request for node N and chooses
the free arc Nfrom — N toreach it, it updates its reservation table
by marking the arc as occupied, answers the request, and informs
all the RAs that may be interested by this reservation, namely those

3Note that two arcs may conflict even if they have no common
nodes; conflicts between arc may be represented as intersecting
arcs within the graph which is, in fact, non-planar.



controlling arcs A1, ..., Ag, about the new state of the arc. These
RAs need to know that arcs conflicting with Ny,o,, — IV can not
be used for the specified time slot.

In this way, the neighbors of RA have up-to-date information about
the state of the arcs that might cause conflicts with their own arcs,
and will be able to provide conflict-free answers to successive reser-
vation requests.

3.2 User Agents

Each UA has an original plan stated in the static allocation plan
and consisting of the list of nodes to traverse together with arrival
and departure time for each of them. As soon as an UA enters
the graph, no matter if it is on time or late, it always tries to get
a reservation for the nodes in its original path. UAs do not try to
reserve a specific arc to reach a node: they ask RAs to reserve the
most suitable arc for them.

UAs do not know the topology of the graph; they may interact with
the Path Agent introduced later on in this section to obtain informa-
tion on the paths that connect the start point where they enter the
graph with the end point they must reach to exit the graph.

UAs communicate with RAs to reserve resources. Only in one case
UAs may communicate with each other. Every UA has a priority
that it uses to reserve a resource or even to steal a resource to an-
other UA. In case of theft of a resource, the UA victim of the theft
may directly interact with the thief as discussed later on.

Since each UA has the unique goal of getting out of the graph, it
continues to look for a path in it until it obtains the reservation
for all the nodes in the path. If it looses the reservation of one of
these nodes, for example because a UA with higher priority stole
the node to it, it will start the negotiation again until it will succeed
in reserving all the nodes in one path.

3.3 Interface Agents

IAs act as an interface between the MAS and the external environ-
ment. There are three types of IAs:

e The Path Agent (PA) provides an interface between agents
in the MAS (in particular, UAs) and the Path Finder Service
offered by a software module external to the MAS. The Path
Finder Service exploits its knowledge about the graph topol-
ogy and geometry. Given two nodes, it returns a list of se-
lected paths connecting them ordered from the best one to the
worst one. The strategy for selecting and ordering the paths
depends on the application. In Ansaldo’s application, it de-
pends on the number of nodes in the path and on geometrical
constraints. If a UAs wants to pass through a particular node
that we name “parking node”, it asks the PA to look for a
path satisfying this requirement. The PA uses this additional
parameter to query the Path Finder Service and to obtain the
list of all the paths that include the parking node.

e The RA Manager reads the structure of the graph from a
configuration file that includes real data and creates the RAs
corresponding to the nodes, equipped with all the informa-
tion they need.

e The UA Manager creates the UAs that enter the graph ac-
cording to a configuration file and taking the real data on the
agents’ delay into account.

4. THE NEGOTIATION ALGORITHM

4.1 Reservation of Resources

The negotiation algorithm is aimed at accommodating the conflict-
ing goals of UAs which try to get a reservation for the resources
they need to traverse the graph. RAs keep track of reservations and
help UAs to find an agreement by informing them about the reser-
vations of other UAs and the state of the graph. Depending on the
situation, a UA can make two types of reservation:

e Disputable: this reservation can be stolen by other UAs and
can be accepted by the RA only if the resource it controls is
free.

e Non Disputable: this reservation can not be stolen by other
UAs and must be accepted by the RA even if the correspond-
ing resource is already occupied; the RA must cancel the pre-
vious reservation, unless they are “non disputable” too. The
last situation, which would raise many problems in deciding
which non disputable reservation should be disputed, never
occurs in the real Ansaldo-STS application.

When a UA wants to reserve a resource 2 that labels node N for a
given amount of time, it sends a request to the RA in charge of R
and indicates the arrival and departure times in R, its priority, and
the node Ny,om in the graph from which it wants to reach /NV. The
RA accesses its reservation table and may answer:

e “ok”if R freein TS,

e “occupied by UA X if R is occupied by UA X in T'S; in
this case, it also sends information about X’s priority and
about the time when R will become free again;

e “not available” if it is not able to find a free arc from Ny, om
to N or if the resource itself is not available (for example
because it went out of order).

If R is free in T'S, then the UA gets an “ok” message from the RA
and has to confirm its reservation within a specified amount of time
(every request of availability has a time out).

4.2 Behavior of UAs

When a UA is created by the UA Manager, it immediately tries to
reserve its original path as specified in the static allocation plan.
This original path, consisting of an ordered list of nodes to reach,
together with the arrival and departure time for each of them, be-
comes the UA’s “current path”. To reserve a path, the UA sends one
request to each RA in charge for the resources labeling the nodes
in the path. These requests are stored in the UA’s knowledge base
with “waiting” state and remain valid only for a specified amount
of time (“time out”). The UA waits for the answers from the RAs
only for this amount of time. The requests with an elapsed time out
change their state from “waiting” to “not accepted”.



The UA processes all the answers it receives until:

1. All the expected answers arrived before the time out expira-
tion and they are all “ok”. In this case, the UA confirms all
the reservation requests.

2. All the answers arrived before the time out expiration but at
least one of them was marked as “not accepted” (namely, it
was either “occupied” or “not available”). The UA looks for
another path, as discussed in the sequel.

3. The time out elapsed before all the expected answers arrived.
The situation is the same as in the previous case: reservation
requests that were not served in time are marked as “not ac-
cepted” and the UA looks for another path.

Every UA has a private knowledge on the maximum delay that it
can undergo. The “occupied” answers from RAs include the time
instant when the resource will be free again. When all the answers
from the RAs have been received and at least one of them is not
“ok”, the UA computes the delay it would gain by maintaining the
current path and delaying the arrival and departure times, and be-
haves according to the following rules:

e The computed delay is acceptable: the path is maintained,
the arrival and departure times are changed using the infor-
mation in the RAs’ answers, and new requests are sent to the
RAs with new time slots, re-starting the process of reserving
a path (which is the same path as before, but with different
arrival and departure times in the nodes).

e The computed delay is not acceptable: the UA asks the list
of the paths from its start node to its end node to the PA.

— If the list of paths returned by the PA is not empty, the
UA selects the first path in the list, calculates the ar-
rival and departure times to/from each node in the path*
and sends the reservation requests for this new path, re-
starting the reservation process. Once obtained all the
answers from the RAs, the UA decides whether to con-
firm the reservation or not:

+ the path is acceptable (either all the reservations
were successful, or some of the reservations must
be delayed because the nodes are not free in the
requested time slot, but they can be reserved later
without causing too much delay): the requests are
changed with the new time slots (if some delay
must be taken into account) and sent again; when
the RA will send a confirmation of their availabil-
ity, the UA will confirm their reservation;

+ the path is not acceptable: the reservations are not
confirmed are will expire. The UA records the
delay associated with this unacceptable path, and
tries to reserve the next path returned by the Path
Agent. This process can be iterated for P times,
where P is a configurable threshold.

*In order to calculate the arrival and departure times to/from each
node, the UA assumes that il will remain X time slots in each node
and that traversing an arc requires Y time slots; the UA might also
know that there is one special “parking node” in the path where it
must stop for Z time slots. In our application, X = 2and Y = 1;
if there is the special “parking node”, Z varies from UA to UA.

- if, after iterating the reservation for all the first
P paths (or for all the returned paths, if they
are less than P), no path turns out to give an
acceptable delay, the UA reserves the best one
among them.

— If the list of paths returned by the PA is empty or all the
paths in the list include at least one node that is out of
order, the UA reserves the current path specifying that
the reservation is “non disputable”. In this case the RAs
involved in the reservation must answer with an “ok”
message (even if the resource was already occupied;
the behavior of the RA is discussed later) and when
the UA confirms all the requests, it specifies that the
confirmation is, again, “non disputable”.

When a RA answers to a request with an “occupied” message, it
also includes the priority of the UA that holds the reservation.

e If the priority of the UA sending the request (“sender” in the
sequel) is greater than the priority of the UA currently hold-
ing the resource (“holder”), the sender can steal the reser-
vation to the holder. The sender confirms the reservation to
the RA and specifies that it won the implicit contest with the
holder, succeeding in getting the resource.

o If the priority of the sender is equal to the one of the holder,
the sender can try to steal the resource to it: in this case the
UA that loses the resource is informed by the RA and can act
in two ways:

— it looks for another path and finds one with an accept-
able delay: it cancels all the previous reservations and
reserves the new path;

— it is not able to find a new path with an acceptable de-
lay: it asks to the UA who stole the resource to release
it. The thief searches for another path and, if it finds
one with an acceptable delay, it cancels the reservation
and changes its path, otherwise it answers “no”. This is
the only situation where two UAs interact directly.

e Finally, if the priority of the sender is lesser than to the one
of the holder, the sender cannot steal the resource and must
look for another path.

If a UA succeeds in getting the reservation for all the nodes of the
path it suspends until it receives a new message.

If a UA receives a “cancel” message from a RA, this means that it
lost a resource (either the resource became no longer available or
another UA stole it: the cause is specified in the RA’s message).
In the first case the UA cancels all its reservations by sending a
“cancel” message to all the RAs involved in the path that it had
reserved and re-starts the process of finding a path.

4.3 Behavior of RAs

When a RA is created by the RA Manager, its knowledge base is
filled with information about its neighbors, about the arcs it has
to manage, and about conflicting arcs. Let us suppose that RA
controls resource R, where R is the label of node N in the graph.
The neighbors of RA are those RAs that control resources labeling



nodes Ny, ..., No,,, from which one or more arcs depart towards V.
For every arc connecting to a neighbor, the RA knows the list of
conflicting arcs, that is, the list of RAs that must be informed when
the arc is allocated. It may happen that a reservation made by a UA
over a resource affects another RA because it will have no free and
non-conflicting arc left. Then, every change to the local reservation
table must be communicated to the neighbors in order to allow RAs
to have an up-to-date and synchronized view of the state of the arcs.

RAs receive requests from UAs containing the following informa-
tion:

e node from which the UA arrives,

arrival and departure time,
e priority of the UA,

e information about the disputability of the request.

The RA answers according to the rules below:

e if the resource is not yet occupied and there is one free en-
tering arc A, it answers “ok”, updates its reservation table
and informs the neighbors that arc A will be occupied in the
given time slot;

o if the resource is not yet occupied but there are no free arcs
for reaching the resource in the time slot specified by the
UA, it looks for the first time instant when an arc will be-
come available in its reservation table; it answers with a “not
available” message including the first time instant when the
resource will become free again;

o if the resource is already occupied by another UA but this al-
location is disputable, it sends an “occupied” message spec-
ifying when the resource will become free again and the pri-
ority of the UA that currently holds it;

e if the resource is already occupied by another UA and the
allocation is “not disputable”, it answers with a “not avail-
able” message including the time instant when the resource
will become free again;

e if the resource is out of order, it answers with a “not avail-
able” message including the time instant when the resource
will be, hopefully, fixed. This time instant is obtained by
adding a default amount of time to the current time. After
the expiration of this default amount of time, the RA will
check whether the resource has been fixed or not.

Every request received from the RA has a time out. If the resource
is already occupied, the RA immediately sends a “not available” or
“occupied” message to the UA trying to reserve it. If the resource is
free and there are other requests from other UAs that are still valid,
the RA waits for possible confirmations from them: after the time
out, it will consider the new request from the UA and will answer
“ok” to it, if it is able to find a free entering arc.

Otherwise, if during the time out period one of the “pending” UAs
confirms its request, the RA immediately answers “occupied” to all
the other UAs that tried to reserve the resource. In this way, if two
UAs try to reserve the same resource for the same time slot, the first
that asks is the one that wins.

4.4 Convergence towards a solution

According to the features of the real application that we addressed,
the negotiation algorithm converges towards a solution provided
that there are always enough free nodes for allowing each UA to
traverse the graph even if following a path different from the orig-
inal one. The number of arcs in the graph ensures a redundancy in
the choice of paths (most of the nodes are reachable from at least
two nodes, and at least two arcs depart from them). Also, UAs enter
the graph at the time stated by their static allocation plan or later.

The static allocation plan itself ensures that UAs enter the MAS at a
“reasonable” pace. This avoids that to many UAs are in the graph in
the same time instant, generating a large amount of re-negotiations
that might cause some UA to undergo continuous plan changes.

Although in the real application for which the negotiation algorithm
has been designed it is very unlikely that two UAs reserve the same
node with “non disputable” priority, the situation may nevertheless
occur. This situation represents a final solution too, in the sense
that the MAS realizes that it cannot cope with it and the negotia-
tion stops. In our real application, two UAs that attempt to reserve
the same node with “non disputable” priority evidence a serious
problem: the number of damaged nodes and arcs in the graph is far
above the physiological number of failures, and this crisis must be
faced by a human expert.

S. EXAMPLES

In this section we show how our distributed allocation algorithm
works by means of two examples.

5.1 Example 1: Conflicts over a Resource

The graph that we use in our first example is represented in Figure
1. There are three UAs, UA1, UA2 and UA3, with the same start
and end nodes, A and H respectively.

Figure 2 shows how the resources (on the rows) are allocated to the
UAs in the time (columns) according to the static allocation plan.
Note that Figure 2 shows time starting from T1, which is the time
slot when UA?2 enters the graph, but there were other time slots
before T1. For example, UA1 entered the graph at time TO which
is not shown in the figure.

Let us suppose that the current time slot is either T1 or T2, and that
UAL1 realizes that it must stop on D not only for the time slot T3 as
the original allocation plan states, but also for T4 and TS, as it has
no means to move from D until T6.

UA1 sends a “non disputable” reservation for the time slots T3, T4
and T5 to the RA controlling D, that we name D’. D has already
a reservation from UA2 for time slots T4 and TS, but, since UA1’s
reservation is “non disputable”, it sends a “cancel” message to UA2
specifying that UA1 stole D for time slots T4 and TS5 with a “non
disputable” reservation.

SFor sake of readability, in this section we will identify the RAs
with the names of the resources they control, which also label the
nodes in the graph.



UA1

UAZ

UA3

Figure 1: Example 1: the graph

A

T1 | T2 | T3 | T4 | TS | T6 | T7
A | UA2 |UA3
B | UA1 | UA2 | UA3
C UA1 | UA2 | UA3 | UA3
D UA1 | UA2 | UA2 | UA3
F
G
H UA1 UA2 | UA3

Figure 2: Example 1: the static allocation plan
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Figure 3: Example 1: new plan under hypothesis P2 >= P3

UAZ2 has to change its original path for reaching H:

Case 1 if the delay that it would undergo if it stopped on C for
T4 and T5 (waiting for UA1 to release D) is acceptable, it
can accept to stop on C for T4 and TS and then move to D;
otherwise

Case 2 it must look for a new path.

Case 1. In the first case, UA2 sends a request to D for T6 and T7,
and a request to C for T4 and T5.

Both C and D answer with an “occupied” message, specifying that
the corresponding resource is occupied by UA3 that has priority
P3.

UA2 has priority P2 and will behave in two different ways accord-
ing to the relationships between P2 and P3:

Case 1.1 if P2 >= P3, UA2 will reserve anyway the resources,
stealing them to UA3;

Case 1.2 it P2 < P3, UA2 must look for a new path.

In the first case (1.1), UA3 will search for a new path because it
has lost C and D: let us suppose that it is B — F — G — H. UA3
will send the requests to the RAs in charge for the resources in this
path. It will succeed in reserving them and it will exit the graph in
time slot T7 (Figure 3).

In the second case (1.2), UA2 will use the path C — G — H and
will succeed in exiting the graph at T8, while the reservations of
UA3 will not be affected (Figure 4).

Case 2. Case 2, namely the case where UA2 should gain too much
delay if stopping on C for T4 and TS5, has the same solution as case
1.2: UA2 will use G and H, in the same time slots as shown in
Figure 4.

5.2 Example 2: Conflicting Arcs

Figure 5 shows a graph with a conflict between the arc connecting
C to D and the arc connecting F and G.



T1| T2 | T3 | T4 | 15| T6 | T7 | T8
A | uaz | uas
B | uat | uaz | ua3
C UAT | UA2 | UA3 | UA3
D UAT | UA1 | UAT | UA3
E
G UAZ | UAZ | UAZ | A2
H UAT | UA3 | UAZ

Figure 4: Example 1: new plan under hypothesis P2 < P3

Figure 5: Example 2: the graph
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Figure 7: Example 2: plan with wrong reservations
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Figure 6: Example 2: the static allocation plan

Figure 8: Example 2: the final reservations

In Figure 6 the static allocation plan for UA1 and UA2 is shown.
They enter the graph in T1 ad T2 and need to follow two different
paths. After entering the graph, both agents succeed in reserving
the resources.

Let us suppose that, after the reservation has succeeded, UA2 needs
to stop on B for one more time slot (T3), shifting all its reservations
ahead. It tries to reserve the resources as shown in Figure 7: even
if all the RAs are free in the time slots requested, UA2 receives a
“not available” answer from D.

This is because, at the beginning of the negotiation algorithm, G
informed D that it had a reservation for time slots TS5, T6 and T7
issued by UA1, and that it would use the arc F — G to reach G.
This arc has a conflict with C — D, so G informed D about this.
Then, D answers to UA2 that D is free starting from T6 (one time
slot is the time required to traverse an arc).

UAZ2 tries to reserve a new path stopping on D in the time slots T6
and T7 and exiting in T8. H answers with an “occupied” message
and, if UA2 has less priority than UA1, it will finally reserve the
path as shown in Figure 8. Otherwise, UA2 will stole H to UA1 in
T8, and UA1 will wait on G until T9, when it will get a reservation
for H and will exit the graph.
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Figure 9: Screenshot of the JADE Sniffer Agent

5.3 Running the MAS in JADE

The MAS has been implemented with JADE and uses JADE WSIG
for interfacing with applications outside the MAS. Due to the con-
fidentiality of the project we can not go into the details of the im-
plementation. We limit ourselves to showing a screenshot of the
JADE Sniffer Agent (Figure 9) taken during one of our tests run on
a Notebook PC with Intel Core 2 Duo Processors, 2.4 GHz, 4MB
L2 cache Processor, 2048MB SDRAM, Linux SUSE OS.

In this screenshot we see UA1 that enters the graph in node 1 man-
aged by RA1 and wants to move to node 2 managed by RA2 and to
exit in node 3 managed by RA3.

As soon as the the UA Manager creates UA1, UA1 sends a “query-
if”” to the three RAs in order to reserve the resources it needs.

After receiving all the three messages from the RAs with “confirm”
performative (namely the messages that we named “ok” in the pa-
per), UA1 replies with three confirmations in order to reserve the
path.

Finally the UA Manager sends an information request about the
reserved path to UA1, and UA1 informs it of the path that it just
reserved.

‘We have run more complex tests with 50 RAs, 3 to 4 UAs, an av-
erage of 50 incompatibilities for each arc caused by 10-12 nodes.
For any update of an arc’s state, the RA in charge for that arc sends
messages to 10 RAs and each message contains 10 to 15 incompat-
ible itineraries. Although very complex, the message exchange for
updating the state of arcs requires few milliseconds.

6. CONCLUSIONS AND FUTURE WORK

The paper outlines the engineering of a MAS designed and devel-
oped by an industrial and an academic partner, Ansaldo-STS and
DISI. The implementation and testing are close to completion and
the MAS is almost ready to be integrated into the Ansaldo-STS
application for which it was developed.

The relevance of the paper mainly lies in the story it tells: industry
trusts the agent technology and is willing to integrate it into its core
business applications. University looks for significant case studies
and is willing to demonstrate that agent technology deserves the

trust from industry. When these complementary wills meet, the re-
sults may lead to innovative industrial products and to constructive
academic experiences.

The main direction of our future work is to provide a systematic
comparison of our distributed negotiation algorithm with the ex-
isting literature. We started this activity and we realized that a
vast amount of proposals similar to ours exist. However, each of
them had its own peculiarity that made it suitable for a very specific
application and not suitable for ours. This initial experience con-
vinced us that a serious comparison with the related work, aimed
at understanding whether our algorithm is more general, efficient,
flexible than others, may require months. Since we had tight time
constraints due to Ansaldo-STS’s commitments, we opted for post-
poning the comparison activity after the end of the MAS imple-
mentation and testing.
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