
Roles in Building Web Applications using Java
Guido Boella

Dipartimento di Informatica
Università di Torino

Italy
+390116706711

guido@di.unito.it

Andrea Cerisara
Dipartimento di Informatica

Università di Torino
Italy

+390116706711

andreacerisara@gmail.com

Roberto Grenna
Dipartimento di Informatica

Università di Torino
Italy

+390116706711

grenna@di.unito.it

ABSTRACT
In this paper we apply the powerJava model of roles and
relationships to a web application programming environment.
First we show how the notion of role, as defined in powerJava,
combines and automates several aspects which are important in
web application programming, and which are now unrelated and
dealt with separately and mostly by hand, and thus prone to
errors. Second we show how from the powerJava code a web
application can be automatically constructed using Struts and
Spring.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control
structures.

General Terms
Design, Languages.

Keywords
powerJava, roles, organizations, web, sessions.

1. INTRODUCTION
Programming a web application implies, among other things, to
cope with several aspects which are loosely connected in current
web programming frameworks and mostly coded by hand rather
than by means of suitable programming abstractions. We list
them with reference to the model of web applications built with
the framework of Java servlets and JSP extended with Struts:

1. Different types of users (role types in the following),
have different or partially overlapping sets of methods
that they can invoke from the client interface. E.g., the
operation for sending an order to a market done by the
market administrator or a market customer. Methods
are invoked by the user by actions corresponding to
clicking links, pressing buttons, etc., on the client web
interface. E.g., administrator, client, etc.

2. The same methods of an application can be invoked, in
some cases, by different users playing different role
types, possibly with different meanings depending on
the role type of the caller. E.g., the sendOrder can have
a different behavior for the administrator or a customer.

3. A user logged in a role type should not be authorized to
invoke methods which are not associated to its role
(invocation either due to bad interface programming or
malevolence of the user). Consider for example, a
RBAC style system of authorization (Role based access
control) [7].

4. In the client web interface often the possible actions at
disposal for the user must be reported, depending on
the role type in which the user logged in the system.
However, possible actions are often represented as
methods of unrelated classes of the application, and the
correspondence user-method must be made by hand.

5. Communication between client and server is
sessionless in the HTTP protocol, thus, the notion of
session is introduced indirectly using cookies or URL
rewriting. However, the abstractions for sessions are
modelled as hashtables of Objects, whose values
must be casted to the right type by the programmer
after being retrieved by using the name of the variable.
This prevents type checking on the use of the session.
Alternatively, it is necessary to add to the session a
complex object with the relative get and set methods
for each variable.

6. Interdependencies like variables shared between the
methods associated to actions performed by the same
user must be expressed using the session hashtable,
since, often, like in Struts, a new instance of the class
of the invoked method is made each time.

7. Interdependencies like shared variables between the
methods associated to actions performed by different
users are difficult to capture, since the session is
associated to one user only. If, instead, the methods are
all invoked on the same object shared between
different user sessions, then the requirement (item 4)
cannot be met, since they would have a behavior not
dependent on the caller.

8. Part of the session must be often made persistent on a
database when the user logs out. However, which parts
are relevant must be selected and type casted by hand
before transferring the values to the database.

9. Coordination between different role instances
belonging to a relationship must be coded by hand like
also in applications not based on the web. E.g., in an e-

learning website associating to each user in a role of
student of a course another user in the role of teacher of
that course. The relationship has a specific state and
behavior.

10. Type checking in web application programming is very
loose due to points 4, 6, 8, above.

Many of these issues should be addressed by means of
suitable abstractions which allow programming web applications
in a more structured way and to keep under control several
related aspects which are now coded separately. In this paper we
propose to use in a web application development framework the
abstraction of role as it has been defined in the object-oriented
programming language powerJava to cope with the above issues
in a unified way. In brief, roles are modelled as a sort of inner
classes of Java expressing different ways of interactions with the
outer class. In the underlying metaphor, the inner classes
describe role types and the outer class the institution the roles
belong to, in this scenario, the web application. The possibility of
playing a role is conditioned to the conformance to some
requirements, expressed as an interface.

A user from a web client, at the moment he logs on the web
application, will be associated to an instance of some role type,
associated with the instance of the outer class representing the
web application. Each time the user calls a methods, it will be
invoked on the same instance. Since roles, as instances of
classes, have a state and a behavior, they constitute the link
between the notion of session and the notion of behavior specific
for a type of user. Moreover, since they specify the behavior as a
set of methods inside the class, the list of method names can be
used as a specification of the list of actions at disposal of the user
to be shown in the client interface.

The role model of powerJava is typed since it is translated
in pure Java. Roles allow simplifying the above problems also by
extending to them the typing too, in different degrees. The
methodology we use is to exploit the potentiality of combining
Struts and Spring for developing web applications, using the
powerJava code not only to generate the Java code but also the
information to configure suitably Struts and Spring. It is outside
the scope of this paper to extend the model to JSP code
producing the web pages in the Model-View-Controller
framework of Struts, to deal with arguments of methods in
Struts, and to describe the extended powerJava precompiler in
detail. The paper is structured as following. First we briefly

summarize the powerJava language (Section 2), then we describe
a running example for web applications (Section 3); in Section 4
we show how the proposed framework can be used in web
applications providing services, like in B2B applications, while
Section 5 concludes the paper.

2. ROLES IN POWERJAVA
Baldoni et al. [1] introduce roles as affordances in

powerJava, an extension of the object oriented programming
language Java. Java is extended with:

1. A construct defining the role with its name, the
requirements and the operations (called powers).

2. The implementation of a role, inside an object and
according to its definition.

3. How an object can play a role and invoke the
operations of the role.

Figure 1 shows the use of roles in powerJava. First of all, a
role is specified as a sort of interface (role - right column) by
indicating with an interface or class who can play the role
(playedby) and which are the operations acquired by playing
the role. Second (left column), a role is implemented inside an
object as a sort of inner class which realizes the role specification
(definerole).

Figure 2. This figure shows how the requirements and roles
are declared.

Figure 1. A role User inside a Printer.

The inner class implements all the methods required by the
role specification as it were an interface. Each definerole
will be written by the precompiler as a class extending
RoleInstance from which the methods for managing roles
are inherited. So, the definerole User become a class
User extends RoleInstance.

In the bottom part of the right column of Figure 1 the use of
powerJava is depicted. First, the candidate player jack of the
role is created. It implements the requirements of the roles
(AuthPerson implements UserReq and SuperUserReq).

Figure 3. The code for a Market institution is shown. We can identify two role types: Administrator, and Customer, which
have both the sendOrder method, but with a different implementation. The annotation @RoleMethod(...) is used by the
precompiler for generating the XML code in Figure 4, in particular, to associate with the action sendOrder the JSP which
presents the results of the action.

Figure 4. Example of a Struts configuration. This means that
when an http://server:port/context/sendOrder.action call is
done, an object of a class labeled market (the label is
mapped to the id property of a bean tag of Spring, see
Figure 5) is created by Spring, then it’s invoked on it the
method sendOrder by Struts; the obtained instance is used
to realize the mappings in market.jsp. Spring remains
transparent to Struts in our roles management.

Before the player can play the role, however, an instance of
the object hosting the role must be created first (a Printer
laser1). Once the Printer is created, the player jack can
become a User too. Note that the User is created inside the
Printer laser1 (laser1.new User(jack)) and
that the player jack is an argument of the constructor of role
User of type UserReq. Moreover jack plays the role of
SuperUser. The player jack to act as a User must be first
classified as a User by means of a so-called role casting
((laser1.User) jack). Note that jack is not classified
as a generic User but as a User of Printer laser1. Once
jack is casted to its User role, it can exercise its powers, in
this example, printing (print()). Such method is called a
power since, in contrast with usual methods, it can access the
state of other objects: namespace shares the one of the object
defining the role. In the example, the method print() can
access the private state of the Printer and invoke
Printer.print().

3. ROLES FOR WEB APPLICATIONS
Consider as a running example an electronic market where

different users can sell and buy goods. We model two kinds of
types of users by means of two role types: Administrator
and Customer, see Figure 2. The two roles can have different
methods, e.g., only the Administrator can add new products
(see Figure 3).

Moreover, both roles have the sendOrder method:
however, the sendOrder can be implemented in different ways
in the two role implementations. The two roles requires different
methods to be played, represented in the two requirement
interfaces. In Figure 3 we represent the Market institution,
containing the implementation of the two roles with state and
behavior (the implementation of the powers). An
Administrator buys products at the cost price, while the
Customer has to pay the sell price. Note that both roles have
instance variables which persists during the session (e.g.,
privateOrders). Moreover, due to the visibility rules of
Java, the roles of the methods can access the private variables of
the outer class instance (numberOfOrders), thus allowing the
coordination of the whole web application. Finally, in the role it
is possible to invoke methods of the player via the powerJava
that variable, referring to a subclass of Player satisfying the
requirements of the role (see Section 4 and Figure 2). At runtime
we want to make possible the following behavior:

1. We program the web application in powerJava, designing
the behavior of each user type as a role class of the web
application.

2. We program the JSP code, completing the view of the
Model- View-Controller pattern [6] of Struts, which is related to
each method of the roles in the institution class.

3. At runtime, when a user logins from a client to the web
application it is assigned a role instance of the type depending
from his identity (a new one the first time, or the previous one
when he returns to the website).

4. Each get or post message sent from the client is mapped
to the method of the role played by the user and executed in the
state of the role instance.

5. The JSP code producing the web page gets the
information directly from the role instance, together with
information about the possible interaction possibilities contained
in the role type class.

6. When the user logs out, the role instance is made
persistent and associated with the credentials of the user.

Figure 5. marketInstitution is the institution defining roles as inner classes (it’s defined as singleton); the market present
in the Struts configuration file is mapped on an instance of RoleLocator (marketRoleLocator), which persists along the user
session. More specifically the method instance() is invoked. The institution, a single instance across all the sessions, is passed in
the constructor by Spring.

To achieve this scenario we must first resolve some
problems, in particular, the management of the association of a
role instance with a user. As explained in the Introduction, Struts
creates an instance of the class the invoked method belongs to at
each invocation by the user. Instead, we want that the role
instance is created only at the beginning of the interaction and
that it becomes the medium of the interaction with the web
application in a transparent way. The methodology we adopt is to
rely on the Java servlet infrastructure extended with Struts and
Spring. The programmer uses powerJava, programming the web
application in terms of roles, all part of the same institution (the
web application). In particular:

1. The powerJava source file modelling the web application
is compiled with the powerJava precompiler into Java code and
some support classes are added.

2. At the same time, the precompiler creates the XML files
for configuring Struts and Spring, associating the methods with
the JSP pages.

Struts and Spring are used in combination with a standard
plugin to manage the invocation of a method from the client.
Consider the code in Figure 4: it specifies that when Struts
receives a message sendOrder it must invoke the method
sendOrder of the class labeled as market. The problem is
that Struts maps the action specified in the get or post message
into a method of a class. In Struts the class is instantiated and the
method invoked each time, independently from the identity of
user. All the communication among methods can be done only

via the session object.

We exploit Struts to intercept the get or post messages and to
map it to a method of a class as usual. However, the role instance
should associated to an outer class instance (the web
application), and the method specified in the action field of get or
post must be invoked on the role instance and not on the web
application instance. Moreover, Struts does not know that both
instances remain the same during the interaction of the user with
the web application. Two issues are involved: first the
persistence of objects along the interaction with the user, second
the method invocation must be dispatched to the role instance
and not to the institution instance. Thanks to the combination
with Spring, via a plugin, the lifecycle of the specified class can
be manipulated, and the invoked method is dispatched to the
role. In the example above the class labeled as market is
embedded in Spring, and Struts passes the control to Spring
when it receives the message
http://server:port/context/sendOrder.action
to create an instance of the bean market.

Spring has been developed to help programmers to deal with
the so called inversion of control principle. For this reason
Spring manages object lifecycles, dependencies in the
constructors and factories for creating objects or returning
existing ones after some logic is performed. We exploit this
capability of Spring in our setting. We use Spring in order to
intercept the method calls of Struts, and elaborate them, instead
of calling a method on a new instance of a class.

First, a factory is associated to the outer class, so that when

Figure 6. The RoleLocator is the object which dispatches the Struts calls to the role instance contained in the role player.

Figure 7. A new role instance is created only in case that the RoleLocator is not able to retrieve a role instance of the right
type. The search is done in the player, or in the persistence mechanism.

a method is first called an instance of the outer class is created,
an instance of the role type of the user is created and associated
with the user in the session. In Figure 5, the configuration file of
Spring is illustrated: the request of creating a market instance
from Struts is not mapped on a Market instance, but on the
bean marketRoleLocator. marketRoleLocator is
associated with a factory RoleLocator, which specifies the
creation logic of roles and institutions. The institution Market
is created by Spring only once (see the scope singleton),
while an instance of RoleLocator is created each time a new
user logins (see the scope session) and the unique Market
instance is passed to its constructor. In this way, all role
instances created by RoleLocator are linked to the same
outer class instance Market. After the RoleLocator instance
is created the first time, then for each user message the method
instance is invoked. In this way, when a method is invoked
on the institution class (the web application), Spring via the
RoleLocator returns the role instance rather than the
institution instance and Struts invokes the method on this role
instance, thus adapting the method to the user. The role instance
is found in the session according to the role type the user logged
into.

This behavior is described in Figure 6. While the
constructor of RoleLocator only assigns to its state the
institution instance, the instance method looks up the right
role instance related to the user and returns it. Since the player of
a role is not part of the system, but a client communicating with
it, it is represented by an instance of the class Player or of a

refinement of it in case the player has to satisfy some
requirements (see Section 4).

With the player are associated all the information about all the
roles played by it in which institution, and, in particular, the
active role, to which the method invocations are dispatched (this
opens the possibility for a player to switch to one role from the
other in the same session). The Player instance represents the
user session in a structured way:

HttpSession session =

ServletActionContext.getRequest().getSes
sion();

session.putValue("USER", player);

The role instances associated with the player represent the
state of the interaction with the web application. The role
instance is first created when the RoleLocator associated at
the session level is not able to retrieve a role instance of the right
type in the player or in the persistence mechanism maintaining
previously played roles (see Figure 7).

RoleContext and RoleInstance are wrappers around
the proper instance of a role type inner class of an institution. In
particular, RoleContext maintains the different instances of
the roles an agent can play in the different institutions on a
server. The same role instance is passed to the JSP code as result
of the work of Struts. This is of particular importance, since the
JSP code is likely to use or print some of the variables or to

Figure 8. In RoleInstance is defined getActions(), which returns the whole list of the possible powers offered by the role.

Figure 9. The JSP code returning the HTML page after the execution of sendOrder method. The variables in the Struts tags
refer to the role instance returned by Spring.

invoke methods of the role instance.

For example the Struts code

<s:property value= "privateOrders">

in the JSP code of Figure 9 returns the value of the privateOrders
variable in a role instance or, if it is not defined in the role class,
the value of the corresponding variable in the outer class (the
web application). In the JSP code, referring to the role instance
via the session is particularly clumsy, while the Struts and Spring
combination offers an elegant solution, returning the role
instance whose identification is delegated to the factory in
Spring. This allows expressing the principle that there is no
direct interaction with an institution, but it is always mediated
via a role (see item 3 in Section 1): thus the same method can
have different meanings depending on the role it is dispatched to
and different roles can have different methods.

Moreover, since an invocation of a method is redispatched
to a role instance, this role instance works as a structured
session: the variables of the role instance represent the state of
the interaction between client and application in a structured way
including type checking, thus avoiding the perils of traditional
session handling via hashtables and casting (item 5). At the same
time the inner-outer class visibility rules in Java allows a role to
have access both to the private variables of the outer class and of
the sibling roles, thus allowing the coordination among different
users without resorting to sessions or global variables (items 6,
7).

A further advantage of representing sessions as role
instances is in case it is necessary to make them persistent after
the logout of the user or a reboot of the server: persistency
mechanisms of Java can be used to store the role instance on a
database without further elaboration (item 8). Since the actions
which can be invoked by the user are all included in role class, it
is possible by reflection to have at disposal the list of all possible
actions of the user (item 4). In Figure 8 it is represented the code
which from the role type extracts the methods which should
become actions of the client web interface. The getActions
methods exploits the @RoleMethod annotation in the role
types (see Figure 3). This information is used both to generate
menus in the html pages generated by JSP programs and in the
exception handling: before invoking the method specified in a get
or post message on a role, its existence can be verified. Thus the
fact that a user is authorized to invoke a method is modelled by
the membership of the method to the role class, without having
to add further mechanisms like annotations, which are, instead,
used to automatically create the XML files for Struts
configuration (item 1, see Figures 4 and 9).

4. FROM USERS TO SERVICES
In case of a web application for a user it is not apparent the

interaction between the role and its player, one of the basic
characteristics of the powerJava definition of roles.

Instead, in case of web applications interacting with each
other by providing services, the two way interaction between
player and role can be exploited. E.g. consider the case of a web
application like the market example above which needs further
credentials to perform an action requested by the client service.

Before sending a reply back to the requesting server, the
requested method during its execution invokes on the player a
getCredentials method.

The interaction between the player and role is modelled by
invoking methods from the client interface and the retrieval of
the role instance from the Player instance made by
RoleLocator invoked by Spring. In powerJava this was made
by means of role cast before role method invocation.

In powerJava the interaction between the role and the player
is done via method invocation on the value of the special variable
that which is initialized at the creation of the role instance with a
reference to the player objects (see Figure 3). The methods which
can be invoked are specified by an interface which must be
implemented by the player: the requirements needed to play a
given role.

In case of web services, there is obviously no interface which can
be implemented by the player, which is a server providing
services on another machine. The requirements correspond to the
services which can be invoked on that server. However, since in
the role the services must be invoked and the services are
expressed as methods, the requirements interface of powerJava
has a double role: as a declarative specification of the services
which should be provided by the player server, and for type
checking the requirement method calls inside a role (see Figures
2, 3).

This method cannot be obviously remotely invoked on the
player server: it must be rather translated in the invocation of a
service. This can be done via a stub which for each method sends
to the player server a message requesting the service and returns
the reply of the server.

Figure 10. A possible implementation for the CertClient,
which is a Certified Player.

The stub has to implement the requirement interface to
allow the type checking to verify the requirement invocation in
the role class (see Figure 10). However, the stub can be created
automatically by the powerJava precompiler.

The player, once playing the desired role, can use its powers
to operate with the organization. In our example (see Figure 3),
the player for the Administrator role is able to send an
order, and to add a new product to the market (using
sendOrder and addProduct powers), while the player for
the Customer role can only send an order (by means of the
sendOrder power), but its sending operation is quite different
from the Administrator’s one.

5. CONCLUSIONS
In this paper we show our framework for introducing the

powerJava mechanism for roles and organizations into web
applications. In our vision, roles and organizations in web
applications can solve a number of issues that developers have to
take in account when programming their pages, like keeping the
state of the interaction between users and web site, or giving
different behaviors to the actions of different types of user.

The same methodology has been used to introduce roles in
distributed systems based on the multi-agent methodology: a
framework Jade-based [4], named powerJade, has been
implemented [3], following a similar approach to the one used
for this work. powerJade offers classes to implement roles,
players, and organizations as agents in Multi Agent Systems,
considering roles as sets of behaviours that agents playing them
have to assume. Players interact with organizations by means of
roles; all the communication issues are solved using messages,
which allows interactions between agents active on different
platforms. There is a precise protocol of messages which agents
have to follow to play a role inside an organization.

First, the candidate player has to initiate an enactment
protocol (see [5]), via messages, with the organization offering
the desired role. The organization, if it considers the agent
authorized to play the role, returns to the candidate player a list
of specifications about the powers and requirements of the
requested role; otherwise, it denies to the player to play the role.
The player, if considered reliable, decides whether to respond to
the organization that it can play the role (and this results in the
creation of a new role instance, associated to the player) or not
(and the protocol ends without any role instance creation).

Also the interaction between a player and a role instance
associated to it is regulated by some protocols: the request (from
the role to the player) for the execution of a requirement, the
invocation of a power by the player, and the request of the role to
invoke a power.

In this context, we have to remember that only the player is
an autonomous agent, while the role and the organization aren’t.
This is the reason for which, in the first considered protocol, a

request for a requirement is done by the role (normally after a
call for a power done by the player), but the player can also
decide of not to execute it, for any reason.

Future works is introducing relationships in web
applications by means of roles, like it is done in object oriented
languages [2]. Moreover, in this paper we do not address yet the
link between arguments of methods and values passed by clients
via forms, even if Struts seems again a promising framework,
since it automatically deal with methods for dealing such values
and initializing variables.

6. REFERENCES
[1] M. Baldoni, G. Boella and L. van der Torre, “Interaction

between Objects in powerJava”, 2007, pages 7-12, volume
6, number 2, Journal of Object Technology

[2] M. Baldoni, G. Boella and L. van der Torre, “ The Interplay
between Relationships, Roles and Objects”, Proceedings of
FSEN’09. LNCS Springer, 2009

[3] M. Baldoni, G. Boella, V. Genovese, R. Grenna, and
Leendert van der Torre, ”How to Program Organizations
and Roles in the JADE Framework” pages 25-36,
Proceedings of MATES’08, LNCS Springer 2008.

[4] F. Bellifemine, A. Poggi, G. Rimassa, “Developing multi-
agent systems with a FIPA-compliant agent framework”,
Software - Practice And Experience. 31(2) pages 103–128.
2008.

[5] M. Dastani, B. van Riemsdijk, J. Hulstijn, F. Dignum, and
J.-J. Meyer. “Enacting and deacting roles in agent
programming”, 2004, pages 189-204 Proceedings of
AOSE’04.

[6] T. Reenskaug, “The Model-View-Controller (MVC) - Its
Past and Present” 2003, JAOO, Arhus

[7] R. Sandhu, E. Coyne, H. Feinstein and C. Youman,“Role-
Based Access Control Models”, 1996, pages 38-47, volume
2, IEEE Computer

