
Towards Automated Trust Negotiation in MAS
Federico Bergenti

Dipartimento di Matematica
Università degli Studi di Parma

federico.bergenti@unipr.it

Leonardo Rossi, Michele Tomaiuolo
Dipartimento di Ingegneria dell’Informazione

Università degli Studi di Parma

leonardo.rossi@studenti.unipr.it
michele.tomaiuolo@unipr.it

ABSTRACT
This paper tackles the notable concept of automated trust
negotiation and presents preliminary results on its integration in
the realm of multi-agent systems. First, a review of the relevant
literature on automated trust negotiation is given and basic ideas
are discussed. Then, a motivated introduction of a novel protocol
for automated trust negotiation in multi-agent systems is presented
and the basic features of the protocol are discussed.

1. INTRODUCTION
Traditionally, the problem of identity management is reduced to
Public Key Infrastructures (PKIs). However, in practice, all
efforts to deploy an X.509 [6] infrastructure have fallen below
expectations. According to a number of proposals, e.g.,
PolicyMaker [1], KeyNote [2], Simple Distributed Security
Infrastructure [8] and Simple Public Key Infrastructure [3], the
very foundation of digital certificates needs to be reconsidered, in
the struggle to make digital certificates really useful in application
scenarios. The main rationale behind such an urged
reconsideration is: what computer applications need is making
decisions about keyholders as users; not simply accessing their
real-life identities. Applications often need to make decisions
about whether to grant access to a protected resource and the real-
life identity of the requestor is just one of the diverse inputs that
the decision process needs. In available PKIs, such decisions are
taken on the sole basis of the keyholder’s real-life name.
However, the keyholder’s name does not make much sense to a
computer application: it is just a key that indexes an entry in a
database. PKIs simply exploit two mandatory requirements: (i) the
name being unique; and (ii) the name being uniquely associated
with the information needed to support the decision process.
Unfortunately, it is extremely unlikely that the name that we use
to identify a person could scale up to the Internet because it would
miss such uniqueness requirements.

This work deals with trust management in open and decentralized
agent-based environments and it addresses the mentioned issues
of traditional identity management solutions. The proposed
analysis and related solutions are geared towards P2P networks,
intended not just as a mere technology, but rather as an
abstraction that captures webs of trust relationships where parties
interoperate directly, without any reliance on centralized
authorities.

In particular, this paper shows how it is possible to join multiple
certificates in a delegation chain, expressing a degree of trust
between two agents in a fully decentralized manner. This kind of
delegation supports secure collaboration also among agents that
do not have a direct acquaintance.

This paper is organized as follows: next section describes the
main elements of automated trust negotiation. Section 3 reviews
the oblivious attribute certificates scheme and it discusses its main
usage pattern and characteristics. Finally, Section 4 drafts a
generic protocol for automated trust negotiation in multi-agent
systems that exploits the techniques presented in the previous
sections.

2. BASICS OF TRUST NEGOTIATION
The traditional client-server model views computer systems in
terms of computational resources and related data centralized in
few servers, which respond to requests of clients. Clients are
supposed to have basic capabilities and they mainly rely on the
resources of servers for their tasks. The multi-agent model
reverses such a view and it describes systems in a P2P fashion:
each agent has some resources to share and some services to offer
to the community of agents. Thus, according to the context, each
agent could easily to play the role of either client or server.

The enforcement of all aspects of security and trust in the access
to the resources made available by agents is a mandatory
requirement to turn agent-based P2P networks into a more
widespread paradigm of cooperation among loosely coupled
agents. The secure management of trust relationships, i.e., the
ability to precisely control the flow of delegated permissions to
trusted entities, is a fundamental requirement to allow the
composition of disparate services provided over the network.

Moreover, since the recent widespread adoption of the Internet in
consumer markets, all contacts among people are often fully
digitalized and there is still no definite solution to the problem of
identity management. Actually there is no body of knowledge to
associate with a name and the simple idea of trying to build an on-
line, global database of names is obviously unfeasible.

Given such a new way people is today using the Internet, a novel
scheme of authorization has recently become relevant because it
provides a scalable and easily extendible model to protect a
generic resource. Such a new scheme, called Automated Trust
Negotiation [11][13][14][15], is gaining more and more interest
in the community of researchers and practitioners. This approach
allows unknown users aimed at accessing some resource to
establish a level of trust in an incremental way through the
exchange of credentials. A credential is defined as a digital
certificate attesting, via a digital signature, the association of one
or more attributes to an entity [16]. A brief example should clarify
the basics of this approach. Alice releases a signed credential to
Bob to assert that Bob works for her; by showing such a
credential, Bob can demonstrate to Carl that he works for Alice.
In such a scenario, Alice plays the role of introducer [1] of Bob
toward Carl; Carl, through Alice’s signature on the credential, is
assured about the assertion being authentic.

In order to create the needed signature, an asymmetric
cryptographic system, based on couple of public/private keys,
must be used. The signature is applied by encrypting a hash of the
credential with the private key, and associating it with the
corresponding public key that is used to verify the credential,
which therefore cannot be falsified. Each credential is associated
with the public key of its subject too. Consequently, the subject
can demonstrate to possess the corresponding private key, so
attesting the ownership of the presented credential. Notably, the
entity that originally issued and signed the certificate is not
requested to participate directly in the process of trust negation.

2.1 Credentials
A credential can be considered as the digital counterpart of a
paper document, e.g., a driving license. Such a paper credential
basically asserts the ability to drive a car, and it is accompanied by
other information, e.g., name and date of birth. Each piece of
information the paper document contains is made of an attribute
name and a corresponding attribute value. Finally, there is a
signature asserting the authenticity of the document.

The owner of a credential can further sign a credential owned by a
third subject. This way, a credential chain can be created, which
can be used to demonstrate a relation, possibly an indirect one,
between the subject who presents it and the (well-)known subject
who released the first credential in the chain.

Attribute in a credential can be considered sensible or not. The
case of non-sensible attributes does not require any particular
care. On the contrary, for the case of sensible attributes, it is
necessary to build a certain level of trust between negotiating
parties via a structured list of release conditions. Such release
conditions are generally known as policies. Different languages
have been defined to represent policies [9][6][3] in an appropriate
and expressive way.

Unfortunately, in real-world cases, the definitions of policies for
credentials may not be sufficient and thus [13] calls for the
introduction of a so-called acknowledgment policy. It is easily
shown that the simple fact of possessing, or not possessing, a
credential exposes an entity to security risks. Actually, the
unauthorized diffusion of reserved information is a problem
caused by access control policies themselves. When an
interlocutor does not possess a credential, it is not associated with
any related policy, and consequently he/she behaves in a different
way than someone actually owning the credential. By simply
observing the pattern of communication, a third party can infer if
someone owns a credential or not. These are the cases where trust
negotiation provides its full benefits. Digital credentials are
exchanged step by step, to increase the level of trust between
involved parties, and the flow of credentials between two entities
through a sequence of requests and releases is what is actually
intended with trust negotiation.

2.2 Negotiation Strategies
The execution of a negotiation requires some agreement on a
common protocol, with the intended agreement that each subject
is free to apply a possibly different strategy. The characteristics of
a negotiation are defined by the adopted strategies. Some of the
tasks of such strategies are related to which credentials are
released, when they are released, which parties are required to
unlock the release of another credential and when the negotiation
closes, successfully or not.

The success of a negotiation is not always possible. One of the
subjects could not have all the needed credentials, or one of the
subjects could implement a policy imposing a cyclic dependency.
Therefore, it is worth defining properties that should be
expressed, in the best possible way, by a strategy:

1. A strategy should bring a negotiation to success, when
such a possibility exists. Strategy having such a
property are said to be complete.

2. Ideally, a strategy should avoid the release of
information which is not strictly required to bring the
negotiation to an end.

3. A strategy should truncate a negotiation when it cannot
bring to a successful conclusion.

4. A strategy should recognize a cyclic dependency among
credentials and policies.

5. The strategy should be reasonably efficient.

In the literature, the following strategies are most commonly
considered.

Eager Strategy. This strategy is complete and efficient.
Participants release all their credentials as soon as the relevant
policy is satisfied, without waiting the credential to be requested.
This strategy is very simple and brings the negotiation to success
whenever it is possible. Nevertheless, it reveals more credentials
than those strictly needed to create the minimum level of trust.

Parsimonious Strategy. In this strategy, the number of
exchanged credentials is minimized. It is reasonably efficient and
it concludes with success whenever it is possible. At the
beginning, parties exchange credential requests, but not the
credentials themselves. All possible release sequences are then
explored. When the exploration requires some unprotected
credentials to be exposed, the path is compared with others. The
path that brings the negotiation to success with the minimum
number of exposed credentials is selected and followed.
Unfortunately, due to the possible limitations in the level of
cooperation between two subjects, the global minimum solution is
not guaranteed.

PRUNES Strategy. The PRudent NEgotiation Strategy allows
establishing trust without revealing irrelevant credentials, while
remaining reasonably efficient. In [17] the communication
complexity is shown to be O(n2), and the computational
complexity to be O(nm), where n is the number of credentials and
m is the size of the policy regulating the release of credentials.

3. THE OBLIVIOUS ATTRIBUTE
CERTIFICATES SCHEME

Paper documents often encapsulate different attributes about their
owners. For example, a driving license commonly reports the date
and place of birth and the current postal address. Such pieces of
information which, in the digital counterpart of the paper
document, are superfluous to validate a policy borrow a loss of
privacy. In the X.509 standard, the values of some attributes of a
certificate, e.g., name and date of birth, are not considered
sensible and so they are revealed freely.

In order to address such an issue, [8] presents a new type of
certificate: the Oblivious Attribute Certificate (OACert). In an
OACert the certificate scheme guarantees to its owner the

possibility to select which attributes to use and how to use them.
The basic idea of OACert is very simple: instead of saving the
attribute values directly in the certificate, the certification
authority saves the cryptographic commitment [1][6] of the
attribute value.

The scenario comprises three types of entities: some Certificate
Authorities (CA), some certificate holders and some service
providers. The concept of CA is not necessarily bound to a
hierarchical environment as in X.509. When speaking of
OACerts, the concept of CA simply identifies an entity capable of
issuing a certificate. An OACert is an assertion about the
certificate holder, digitally signed by a CA. Each OACert contains
one or more attributes. When the system of cryptographic
commitments is secure, the certificate does not disperse any
information about sensible attribute values; so, the content of the
OACert can be made public. In such cases, the certificate holder
can show its OACert without having to worry about the privacy of
its attributes.

The generic scenario proceeds as follows: (i) a CA generates an
OACert for its future holder; (ii) each CA and each certificate
holder own a unique public/private key pair; (iii) a service
provider, when presented with a request from a certificate holder,
performs an access control on the basis of the attributes of the
certificate holder, certified in the OACert.

An attribute in an OACert can be used in different ways for:

1. Opening the commitment and thus revealing the value
of the attribute.

2. Using a Zero-Knowledge Proof protocol to prove that
an attribute value satisfies a condition, without
revealing more information.

3. Using a special protocol, called Oblivious Commitment
Based Envelope (OCBE) [8], that warrantees that the
receiver would finally receive a message only when the
attribute value satisfies a requested condition, without
revealing more information about the attribute value
itself.

The following example discusses the scenario and it should clarify
the roles of the various entities involved. Let’s suppose that Alice
needs to demonstrate to Bob that she is older than 21, but she
wants to keep her actual age private. We need a protocol ensuring
that Alice succeeds in demonstrating the required condition
without Bob knowing her actual age.

Alice, the certificate holder, establishes a secure communication
channel with Bob, the service provider and, at the same time, she
proves their ownership of the OACert to Bob. Bob verifies the
signature and the validity period of the OACert, then he verifies
that the certificate has not been revoked using, e.g., the standard
technique described in [6]. Moreover, Bob verifies that Alice
owns the private key corresponding to the public key included in
the OACert. Subsequently, if such an initialization process
worked fine, Alice requests the public key to Bob in order to
decipher the document and Bob answers by sending his policy.

After such an initialization phase, Alice can now read subsets of
attributes by using proper protocols. In order to read multiple
attributes, Alice performs the same protocol repeatedly. There are
three protocols that can be used to read attributes, and each one of

them is characterized by a different complexity of computation
and communication, and a different level of privacy loss [8].

1. Direct show. This protocol is used when Alice trusts
Bob and she simply reveals the attribute values to him,
or when Alice has very restricted computing power.
This protocol is very efficient, but it supports the
minimum level of privacy. Bob actually knows the
attribute values, and he can also convince others about
this.

2. Zero-knowledge show. Alice uses zero-knowledge
proofs to demonstrate that her attributes satisfy some
property that Bob requires. This protocol is much more
expensive than the direct show protocol, but it offers
better protection of privacy. Bob learns if some attribute
values satisfy his policy, but he cannot convince others
about his ownership of values. Actually, Bob does not
learn the exact attribute value, if multiple values satisfy
the policy.

3. Oblivious show. Alice interacts with Bob using the
OCBE protocol. Bob does not learn anything about
attribute values. Among the three types of protocols, the
oblivious show offers the best protection of privacy.
Moreover, it often requires a computational power
similar or even less than the zero-knowledge show
protocols.

This last case, i.e., the oblivious show is worth some discussion.
Informally, the OCBE protocol enables Bob to send an enciphered
message to Alice in such a way that Alice can read the message if
and only if the value of its commitment satisfies a predicate. The
protocol as a whole is considered oblivious if, at the end of the
protocol, Bob cannot capture any information about the Alice’s
commitment value.

4. A GENERIC PROTOCOL FOR
AUTOMATED TRUST NEGOTIATION
The aim of automated trust negotiation is to establish trust
between two unknown parties through the release of certificates.
OCBE, together with OACert, simplifies the process of trust
negotiation reducing the number of iterations and the overall
number of exchanged certificates.

Here, we study the characteristics of a protocol for automated
trust negotiation to be used in a distributed and decentralized
environment. In order to fully exploit all such characteristics, the
introduction of this new protocol requires the realization of new
types of certificates and related supports. The resulting software
framework, implemented in Java using an XML representation of
certificates adhering to SAML specifications, has been prototyped
but its description is unfortunately out of the scope of this paper.

4.1 General Requirements
An open network like the Internet requires the greatest flexibility
from an authentication protocol: it needs to fit all cases in
reasonable ways, and it should be able to expand its
functionalities by incorporating existing resources. Let’s discuss
some of the problems which could emerge in the introduction of a
new protocol by means of sample scenarios.

Alice and Bob do not share the same CA, they do not know each
other and moreover they are in located in two different security

domains. In practice, this is the common case of Alice and Bob
not sharing the same CA and, e.g., Bob does not know the CA
that issued the certificate to Alice. In this case, Bob would
probably not trust the CA of Alice and he would not accept
Alice’s certificate.

This problem and its numerous variants can be solved in different
ways, according to the actual situation. For example, the previous
scenario is addressed by the introduction of a hierarchy of CAs
with Bob trusting the root of the hierarchy. In fact, this is the
approach used in the X.509 certificate scheme. Otherwise, the
problem can be solved by means of the introduction of a more
flexible chain of trust as foreseen in the PGP certificate scheme.

Another interesting case is exemplified as follows. Alice intends
to buy a book from Bob’s bookstore. Alice has a discount if she
demonstrates that she is a member of ALI (Associazione Lettori
Italia). Let’s suppose Bob trusts ALI only and Alice is instead a
member ALP (Associazione Lettori Parma), which is a local
section of ALI. ALP issued an OACert to Alice, attesting that she
is a member of ALP. If ALP has a valid certificate, not containing
other sensible information, issued by ALI and accrediting it as a
section of ALI, then a certificate chain can be created, to
demonstrate that Alice satisfies Bob’s policy. Alice sends such a
certificate chain to Bob without revealing information about other
attributes in her OACert. Finally, she starts a zero-knowledge
proof protocol to demonstrate that she is a member of ALI,
indirectly.

Another subtle problem arises when different CAs identify the
same property with different names or encodings. For example,
the prefecture may use DoB to name the attribute identifying the
date of birth in a driving license, while the municipality may use
the word date-of-birth to identify the same piece of data in an
identification card. It could also happen that different CAs use
different encodings to convert an attribute to and from an integer
value.

In order to solve such a problem, each CA publishes its encoding
mechanism online, and it signs it using its private key. When
Alice shows her certificate to Bob, she points to Bob which
encoding mechanism is used for her attributes signed by a certain
CA. Bob can then regulate his policy according to the encoding.

Finally, let’s consider the following scenario [8]: Alice and Bob
want to exchange their certificates about their wages. Alice’s
policy allows showing the certificate only to those who have a
salary greater than $100k per year. Similarly, Bob shows his own
certificate only to those earning more than $80k per year. Using
the standard trust negotiation techniques, neither Alice nor Bob
would be able to release their certificates before the other one.
Instead, let’s suppose that both Alice and Bob use OACert and the
OCBE protocol. In this case the problem can be solved. In fact,
Alice and Bob exchange their certificates without the other part
being able to discover the real salary value. Bob uses the OCBE
scheme to send his salary value to Alice, together with a proof
about the attribute value in the OACert certificate, with the
condition that Alice can open the message if and only if her salary
is greater than $80k. Bob can be sure that the value of his salary is
revealed to Alice only if her salaries satisfy Bob’s policy. The
policy is enforced without knowing Alice’s salary value. It is
worth noting that Alice’s policy does not conflict with Bob’s one;
actually it is not activated, as at the end of the transaction Bob
does not know Alice’s salary value.

4.2 Openness Requirements
In order to boost the adoption of a novel protocol for establishing
trust between two unknown entities, a number of notable issues
have to be addressed in a practical and generic way. The
following is a list of characteristics that a protocol for exchanging
credentials should provide to demonstrate flexibility and
adaptability to different situations.

Support for different types of credentials. The protocol should
support and include different types of certified credentials. These
should comprise standard certificates, e.g., X.509, as well as new
proposed formats, e.g., OACert, hidden credentials and
anonymous credentials.

Support for attributes without certification. The protocol
should support non-certified attributes. This is important to allow
the use of attributes that cannot be certified by any means.

Support for signed credentials. The protocol must support the
use of signatures to certify a credential, without requiring
necessarily a hierarchy of CAs. Each entity in the system should
be able to sign a credential. This way, the system can fit different
situations, including the case where a more rigid hierarchy of CAs
effectively exists.

Support for different cryptographic algorithms. The
negotiation protocol must support the use of different
cryptographic systems to improve the efficiency of trust
negotiation. The more the protocol is unbound from a particular
implementation, the more it can adapt to the evolution of the
technology.

Separation of the two fundamental concepts of credential and
attribute. Credentials are sometimes considered the same entity
of the attributes they convey. Under such a misconception, when
Bob requests Alice to demonstrate the actual possess of a certain
certificate, Bob should also satisfy all policies associated with all
attributes that the certificate contains, even for those attributes
that are superfluous to demonstrate the simple possession of the
certificate. The greater the number of policies to satisfy, the
greater is the risk of failing the negotiation, even when a solution
is actually possible. If the separation of the concepts of credential
and attribute is respected, then it is possible to demonstrate the
possession of a credential without revealing any information
about the attribute itself.

Selective revelation of attributes. The holder of a credential
must be able to select which attributes to reveal to other parties.
For example, a driving license includes a number of attributes like
name, surname, age and address. If the other entity needs to know
the age attributes, it is obviously inconvenient to reveal other data
in the license, especially if they are considered sensible.

4.3 Usability Requirements
Here we present some features that a protocol should provide, at
least selectively. Looking at real situations, each single piece of
information that the protocol leaks is considered sensible, to a
certain degree. For example, in many countries privacy must be
protected to respect laws. The certificate holder must be allowed
to decide if, when and to whom to reveal the information
contained in a certificate. Also, the very possession of an attribute
or a credential can be considered sensible information on its own.
This also applies to the validating party. Each policy can be
considered sensible. Or probably the very existence and

availability of a resource, or the reception of a request for a
resource, can be sensible.

Obviously, there are lots of facets, more or less important in
different scenarios, to be considered to enable the success of a
transaction. For example, in a case the protection of the actual
value of an attribute could be a mandatory requirement, while in
another case this would be perfectly acceptable. The following is a
list of the major cases we need to take into account in designing a
protocol for supporting decentralized interactions.

No proof that an attribute satisfy a policy. A credential holder
can demonstrate that his/her attribute satisfies a policy without
revealing the effective attribute value. For example, Alice can
demonstrate that she is older than 21 using her driving license
only, without revealing any further piece of information about her
age.

Ignorant use of a credential. In this case Alice obtains a resource
from Bob without revealing the very fact of possessing a
credential. Alice reveals the attributes to Bob, as required by the
policy associated to the requested resource, without revealing the
authenticity of provided data to Bob. Bob must arrange in a way
to release the resource to Alice anyway, thug being sure that she
will not be able to access it if her data are false, without even
knowing if Alice’s data were certified or not.

Protecting the sensibility of the request for a resource. Alice
should be able to reveal her request for a resource if and only if
Bob satisfies a certain policy.

Ignorant use of an attribute. Alice and Bob conclude a
transaction in which Alice receives the requested resource if and
only if the attributes in her credential satisfy Bob’s policy. At the
end, Bob does not learn anything about Alice’s attribute values,
even if the value would satisfy the policy or not.

Sensible attributes and policies. A particular situation can
require that even policies are to be considered sensible. For
example, let’s suppose Bob’s policy states that Alice must be
older than 25, and Alice’s is 30 years old. Alice can know if she
satisfies Bob’s policy without revealing her precise age or
learning the threshold defined in the policy.

Apart from these fundamental features, there are additional
features which are desirable for a certificate exchange protocol.

Univocal interpretation of policies and credentials. The central
role played by policies and credentials requires CAs to publish
and sign the encoding algorithms used in such a way to make a
further format negotiation simple.

Policy Language. A good language to express policies efficiently
must be available. Moreover, it must enable its extension for uses
outside the contest where it was originally designed.

Communication Strategies. The protocol must allow the use of
different strategies, each one persecuting different aims. We can
consider optimal the situation where different strategies could
change at any time, even while being executed.

Efficiency. The efficiency of a protocol can be evaluated on the
basis of the size and number of exchanged messages, in the case
of a certain request. Apart from network traffic, also
computational capacity required to execute the protocol should be
taken into account. For example, the use of cryptographic systems
produces an overhead not compatible with an embedded or
otherwise limited system.

5. CONCLUSIONS
In this paper we discussed the notable idea of automated trust
negotiation and we started the process of integrating it into multi-
agent systems. The inherent openness and scalability of multi-
agent systems inhibit the simple adoption of available models of
automated trust negotiation and a step forward urges. This work
identifies the basic features of a novel protocol for allowing
agents negotiating trust and it also shows the basis of its
integration in multi-agent systems. Unfortunately, for editorial
reasons, the presentation of a prototype Java framework that
implements the presented ideas lacks and it is reserved for a future
paper. Briefly, such a framework allows:

1. Creating credentials, containing one or more obscured
attributes associated with their subject, potentially
issued by a third entity;

2. Releasing, at the same time or separately, a signature to
attest the authenticity and the credential itself;

3. Verifying that credentials were not altered;

4. Evaluating an access request, verifying the possession
of some attributes;

5. Using one of the implemented protocols to verify a pre-
requisite.

Therefore, the framework implements a drop-in solution to many,
if not all, problems in managing trust negotiation in real-world
multi-agent systems and it has been developed using the criteria
and the desiderata that this work structured and motivated.

6. REFERENCES
[1] Blaze, M., Feigenbaum, J., and Lacy, J. 1996 “Decentralized

trust management”. In Procs. 17th Symposium on Security
and Privacy. pp. 164-173, IEEE Computer Society Press.

[2] Blaze, M., Feigenbaum, J., Ioannidis, J., and Keromytis, A.
1999. “The KeyNote Trust-Management System Version 2.”
RFC 2704.

[3] Bonatti, P. A., and Samarati, P. 2002. A uniform framework
for regulating service access and information release on the
web. Journal of Computer Security, vol. 10(3):241–272.

[4] Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B.,
Ylonen, T. 1999. SPKI certificate theory. IETF RFC 2693.

[5] Forman, G. 2003. An extensive empirical study of feature
selection metrics for text classification. J. Mach. Learn. Res.
3 (Mar. 2003), 1289-1305.

[6] Gavriloaie, R., Nejdl, W., Olmedilla, D., Seamons K., and
Winslett, M. 2004. No Registrations Needed: How to Use
Declarative Policies and Negotiation to Access Sensitive
Resources on the Semantic Web. In Procs. European
Semantic Web Symposium. Heraklion, Greece.

[7] Housley, R. et al. 2002. Internet X.509 PKI Certificate and
CRL Profile. IETF RFC 3280.
http://www.ietf.org/rfc/rfc3280.txt

[8] Li, J., and Li, N. 2006. OAcerts: Oblivious attribute
certificates. IEEE Trans. Dependable Sec. Comput., vol.
3(4):340–352.

[9] Li, N., Mitchell, J. C., and Winsborough, W. H. 2002.
Design of a role-based trust management framework. In
IEEE Symposium on Security and Privacy, pp. 114–130.

[10] Rivest, R. L., Lampson, B. “SDSI - A Simple Distributed
Security Infrastructure”.
http://people.csail.mit.edu/rivest/sdsi11.html

[11] Seamons, K. E., Winslett, M., and Yu, T. 2001. Limiting the
disclosure of access control policies during automated trust
negotiation. The Internet Society. ISBN 1-891562-11-8.

[12] Spector, A. Z. 1989. Achieving application requirements. In
Distributed Systems, S. Mullender, Ed. Acm Press Frontier
Series. ACM Press, New York, NY, 19-33. DOI=
http://doi.acm.org/10.1145/90417.90738

[13] Winsborough, W. H. 2002. Towards practical automated
trust negotiation. In Procs 3rd International Workshop on
Policies for Distributed Systems and Networks. pp. 92–103.
IEEE Computer Society Press.

[14] Winsborough, W. H., and Li, N. 2002. Protecting sensitive
attributes in automated trust negotiation. In WPES, pp. 41–
51. ACM. ISBN 1-58113-633-1.

[15] Winsborough, W. H., and Li, N. 2006. Safety in automated
trust negotiation. ACM Trans. Inf. Syst. Secur., vol.
9(3):352–390.

[16] Winslett, M., Ching, N., Jones, V. E. and Slepchin, I. 1997.
Using digital credentials on the world wide web. Journal of
Computer Security, vol. 5(3):255–266.

[17] Yu, T., Ma, X., and Winslett, M. 2000. Prunes: an efficient
and complete strategy for automated trust negotiation over
the internet. In Procs 7th ACM Conference on Computer and
Communications Security, pp. 210–219. ACM. ISBN 1-
58113-203-4.

