
ENVIRONMENT PROGRAMMING
IN MULTI-AGENT SYSTEMS

Alessandro Ricci
aliCE group at DEIS, Università di Bologna, Cesena

a.ricci@unibo.it

WOA 2009 MINI-SCUOLA

mailto:a.ricci@unibo.it
mailto:a.ricci@unibo.it

Environment Programming in MASWOA 2009 MINI-SCUOLA

OUTLINE

• PART ONE / Background

- the basic concept of environment in MAS

• PART TWO / Environment as First-Class Abstraction

- AOSE and MAS engineering perspective

• PART THREE / Environment Programming

- MAS programming perspective

- Practice with CArtAgO + Jason

PART ONE
THE CONCEPT OF ENVIRONMENT

IN MULTI-AGENT SYSTEMS
- BACKGROUND -

WOA 2009 MINI-SCUOLA
ENVIRONMENT PROGRAMMING IN

MULTI-AGENT SYSTEMS

Environment Programming in MASWOA 2009 MINI-SCUOLA

THE NOTION OF ENVIRONMENT

• The notion of environment is intrinsically related to the
notion of agent and multi-agent systems
- “An agent is a computer system that is situated in some

environment and that is capable of autonomous action in this
environment in order to meet its design objective” [Wooldridge
& Jennings, 1995]

- “An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon the
environment through effectors." [Russell & Norvig, 1995]

• Including both physical and software environment
- “computational”, ”virtual” environments

Environment Programming in MASWOA 2009 MINI-SCUOLA

SINGLE-AGENT PERSPECTIVE

• Perception

- process inside agent inside of attaining awareness or understanding sensory
information, creating percepts

• perceived form of external stimuli or their absence

• Actions

- the means to affect (change or inspect) the environment

[Wooldridge, 2002]

ENVIRONMENT

feedback

actions

percepts

effectors / actuators

sensors

acti
on to

 d
o

PERCEPTION

DECISION

ACTION

Environment Programming in MASWOA 2009 MINI-SCUOLA

MULTI-AGENT PERSPECTIVE

• In evidence
- spheres of visibility and influence

- overlapping => interaction

[Jennings, 2001]

Environment Programming in MASWOA 2009 MINI-SCUOLA

ABSTRACT “ENVIRONMENT
PROGRAM”

[Russell and Norvig,1993]

Environment Programming in MASWOA 2009 MINI-SCUOLA

A BASIC CLASSIFICATION
• Accessible versus inaccessible

- indicates whether the agents have access to the
complete state of the environment or not

• Deterministic versus nondeterministic
- indicates whether a state change of the environment is

uniquely determined by its current state and the actions
selected by the agents or not

• Static versus dynamic
- indicates whether the environment can change while an

agent deliberates or not

• Discrete versus continuous
- indicates whether the number of percepts and actions

are limited or not

Environment Programming in MASWOA 2009 MINI-SCUOLA

FURTHER CLASSIFICATION

• Centralized vs. distributed
- centralized environment: a single monolithic system

• all agents have access to the same structure

- distributed environment: as a set of places assembled in
a network

• the state of a place depends on the surrounding places

• the perception of agents is related to one or multiple places

• support for agent mobility, moving from place to place

• Generalized vs specialized
- a generalized model is independent of the kind of actions

that can be performed by agents

- a specialized model is characterized by a well-defined
set of actions

[Ferber, 1999]

Environment Programming in MASWOA 2009 MINI-SCUOLA

COMMUNICATIVE & SITUATED MAS

• Purely communicative MAS
- agents can only communicate by message transfer

• Purely situated MAS
- agents can only act in the environment

• Combination of communicating and situated MAS

Environment Programming in MASWOA 2009 MINI-SCUOLA

ACTION AND PERCEPTION IN
AGENT ABSTRACT ARCHITECTURE

• Perception function see
- representing the ability to obtain

information from its environment

• Action-selection function action
- mapping from internal states to

actions

• Update state next function
- mapping an internal state and a

percept to an internal state

see action

next state

ENVIRONMENT

AGENT

Environment Programming in MASWOA 2009 MINI-SCUOLA

ENVIRONMENT & REACTIVE
AGENTS

• “Reactive” agents
- no symbolic representations, no reasoning or symbolic

manipulations in decision-making

• Strongly-based on the notion of environment
- “reactive” ~ “situated”

• reactive agents are typically situated in some environment
rather being disembodied

- agent “intelligent” behaviour is seen as innately linked to
the environment agents occupy

- the behaviour is a product of the interaction the agents
maintain with their environment

Environment Programming in MASWOA 2009 MINI-SCUOLA

ENVIRONMENT & INTELLIGENT
AGENTS

• Intelligent agents [Wooldridge and Jennings, 1995]

- reactivity

• intelligent agents are able to perceive the environment and respond in a
timely fashion to changes that occur in its order to satisfy their design
objectives

- pro-activeness

• intelligent agents are able to exhibit goal-directed behaviour by taking the
initiative in order to satisfy their design objectives

• goals are defined as state of affairs of the environment to bring about

- social ability

• intelligent agents are capable of interacting with other agents in order to
satisfy their design objectives

• role of mediated interaction

Environment Programming in MASWOA 2009 MINI-SCUOLA

ACTIONS AND PERCEPTIONS
IN BDI AGENTS

• BDI agent model/architecture
- agent programs specified in terms of mental attitudes

(beliefs, desires, intentions)

- based on practical reasoning

• deliberation

- deciding what states of affairs to achieve / mantain

• means-ends reasoning

- how to achieve/mantain the states of affairs

• Action and perception stage as part of the execution
cycle (or control loop)

Environment Programming in MASWOA 2009 MINI-SCUOLA

AGENT EXECUTION CYCLE
PSEUDO-CODE

Environment Programming in MASWOA 2009 MINI-SCUOLA

EXECUTION CYCLE IN A CONCRETE
ARCHITECTURE: JASON CASE

Environment Programming in MASWOA 2009 MINI-SCUOLA

ENVIRONMENT IN AGENT-ORIENTED
PROGRAMMING

• Agent-Oriented Programming perspective
- agents & MAS as a paradigm for programming

• strongly related to Agent-Oriented Software Engineering

- many languages / platforms, many different perspectives
• Agent-0, Placa, April, Concurrent Metatem, ConGolog / IndiGolog, AgentSpeak,

AgentSpeak(L) / Jason, 3APL, IMPACT, Claim/Sympa, 2APL, GOAL, Dribble, etc..

• Jack, JADE, JADEX, AgentFactory, Bhrams, JIAC, etc

• Environment support
- typically minimal

• most of the focus is on agent architecture & agent communication

- in some cases: basic environment API

• for “customising” the MAS with a specific kind of environment

• Jason, 2APL, Jadex

Environment Programming in MASWOA 2009 MINI-SCUOLA

ENVIRONMENT API IN AOP
(GENERAL PERSPECTIVE)

actions

percepts

SIMULATED

WORLD

OR

INTERFACE

OR

WRAPPER TO

EXISTING

TECHNOLOGY

EXTERNAL

WORLD
(PHYSICAL OR

COMPUTATIONAL)

MAS ENVIRONMENT

REAL WORLD
(PHYSICAL OR

COMPUTATIONAL)

mimicking

Example:

JAVA

PLATFORMAGENTS

MAS

Environment Programming in MASWOA 2009 MINI-SCUOLA

ENVIRONMENT API IN JASON
• Jason

- Java-based open-source interpreter of an extended version of
AgentSpeak(L) for programming MAS

• BDI architecture

- fully customisable agent architecture
• basic environment API to define customised environments

User
Environment

Agent
Architecture

getPercepts

change
percepts

executeAction

+init(String[] args)
+stop()

+getPercepts(String agName): List<Literal>
+executeAction(String agName, Structure action): boolean

+addPercept(String agName, Literal p)
+removePercept(String agName, Literal p)
...

-globalPercepts: List<Literal>
-agPercepts: Map<String,List<Literal>>

Environment

+init(String[] args)
+executeAction(String agName, Structure action): boolean

UserEnvironment

[Bordini, Hübner, Woodridge - 2007]

Environment Programming in MASWOA 2009 MINI-SCUOLA

AN EXAMPLE IN JASON: ENV. SIDE
public class MarsEnv extends Environment {
 private MarsModel model;
 private MarsView view;

 public void init(String[] args) {
 model = new MarsModel();
 view = new MarsView(model);
 model.setView(view);
 updatePercepts();
 }

 public boolean executeAction(String ag, Structure action) {
 String func = action.getFunctor();
 if (func.equals("next")) {
 model.nextSlot();
 } else if (func.equals("move_towards")) {
 int x = (int)((NumberTerm)action.getTerm(0)).solve();
 int y = (int)((NumberTerm)action.getTerm(1)).solve();
 model.moveTowards(x,y);
 } else if (func.equals("pick")) {
 model.pickGarb();
 } else if (func.equals("drop")) {
 model.dropGarb();
 } else if (func.equals("burn")) {
 model.burnGarb();
 } else {
 return false;
 }

 updatePercepts();
 return true;
 }
 ...

 ...

 /* creates the agents perception
 * based on the MarsModel */
 void updatePercepts() {

 clearPercepts();

 Location r1Loc = model.getAgPos(0);
 Location r2Loc = model.getAgPos(1);

 Literal pos1 = Literal.parseLiteral
 ("pos(r1," + r1Loc.x + "," + r1Loc.y + ")");
 Literal pos2 = Literal.parseLiteral
 ("pos(r2," + r2Loc.x + "," + r2Loc.y + ")");

 addPercept(pos1);
 addPercept(pos2);

 if (model.hasGarbage(r1Loc)) {
 addPercept(Literal.parseLiteral("garbage(r1)"));
 }

 if (model.hasGarbage(r2Loc)) {
 addPercept(Literal.parseLiteral("garbage(r2)"));
 }
 }

 class MarsModel extends GridWorldModel { ... }

 class MarsView extends GridWorldView { ... }
}

Environment Programming in MASWOA 2009 MINI-SCUOLA

AN EXAMPLE IN JASON: AGENT SIDE
// mars robot 1

/* Initial beliefs */

at(P) :- pos(P,X,Y) & pos(r1,X,Y).

/* Initial goal */

!check(slots).

/* Plans */

+!check(slots) : not garbage(r1)
 <- next(slot);
 !!check(slots).
+!check(slots).

+garbage(r1) : not .desire(carry_to(r2))
 <- !carry_to(r2).

+!carry_to(R)
 <- // remember where to go back
 ?pos(r1,X,Y);
 -+pos(last,X,Y);

 // carry garbage to r2
 !take(garb,R);

 // goes back and continue to check
 !at(last);
 !!check(slots).
...

...

+!take(S,L) : true
 <- !ensure_pick(S);
 !at(L);
 drop(S).

+!ensure_pick(S) : garbage(r1)
 <- pick(garb);
 !ensure_pick(S).
+!ensure_pick(_).

+!at(L) : at(L).
+!at(L) <- ?pos(L,X,Y);
 move_towards(X,Y);
 !at(L).

Environment Programming in MASWOA 2009 MINI-SCUOLA

ENVIRONMENT API: REMARKS

• In most cases: no direct support
- indirectly support by lower-level implementing technology

• e.g. Java

• In some cases: first environment API
- useful to create simulated environment or to interface

with external resources

- simple model: a single / centralised object

• defining agent (external) actions

- typically a static list of actions, shared by all the agents

• generator of percepts

- establishing which percepts for which agents

Environment Programming in MASWOA 2009 MINI-SCUOLA

WRAP-UP

• Classic view about the environment in MAS

- something outside agents and the MAS

• outside MAS design and development

- the context where agents’ activities take place

• the context upon which agent goals are defined

- single agent-perspective as the main perspective

• Mostly inherited from (D)AI

PART TWO
ENVIRONMENT AS FIRST-CLASS

ABSTRACTION

WOA 2009 MINI-SCUOLA
ENVIRONMENT PROGRAMMING IN

MULTI-AGENT SYSTEMS

Environment Programming in MASWOA 2009 MINI-SCUOLA

CHANGING THE PERSPECTIVE

• From the (D)AI-oriented perspective...
- environment as a part outside the MAS

• out of MAS design and development

• ...to AOSE and MAS programming perspective
- all non-agent elements of the MAS are typically considered to

be part of the MAS environment

• resources, services, infrastructure,...

• Variety of responsibilities in MAS
- communication, coordination, organisation

- specific examples
• coordination infrastructures
• e-Institutions

Environment Programming in MASWOA 2009 MINI-SCUOLA

COORDINATION INFRASTRUCTURES

• Providing functionalities for MAS coordination
- mechanisms to enable agent interaction

• including agent indirect communication

- mechanisms to manage the interaction (~coordination)

• shaping the interaction space to achieve some global
coordinated behaviour

• Specific examples
- stigmergic coordination

• computational fields, digital pheromone infrastructure

- tag-based interactions

- space-based coordination middleware

Environment Programming in MASWOA 2009 MINI-SCUOLA

STIGMERGIC COORDINATION

• Agents coordinate their behaviour through the
manipulation of marks in the environment in a
similar way as social ants coordinate
- abstract notion of mark as information signs

• Environment is the coordination medium mantaining
processes independent from agents’ activities
- providing actions to create and perceive marks

- embedding processes manipulating mark

• analogous to aggregation, diffusion, evaporation

Environment Programming in MASWOA 2009 MINI-SCUOLA

STIGMERGIC APPROACHES:
DIGITAL PHEROMONES

• Digital pheromones [Parunak, Brueckner, Sauter - 2005]

- distributed environment implementing dynamic structure aggregating,
diffusing, evaporating pheromones (which are software objects)

- software agents can use pheromones to dynamically form paths to
locations of interest

(from [Parunak, Brueckner, Sauter - 2005])

Environment Programming in MASWOA 2009 MINI-SCUOLA

STIGMERGIC APPROACHES:
TOTA

• TOTA (Tuple-On-The-Air) [Mamei, Zambonelli - 2005]

- tuple-based middleware for implementing different kind of
stigmergic-based coordination activities

- distributed environment composed by a network of nodes managing
the insertion, retrieval and diffusion/evaporation/propagation

• tuple contains rules “programming” their propagation/evaporation/etc.

Environment Programming in MASWOA 2009 MINI-SCUOLA

FIELD-BASED ENVIRONMENTS
• Computational fields [Mamei, Zambonelli - 2006]

- agents move and coordinate their behaviour by following abstract force
fields spread in the environment (by agents or the environment itself)

- environment dynamics and agents movements induce changes in the
fields, realizing the feedback cycle

- implemented upon TOTA middleware

(figure from [Mamei, Zambonelli, Leonardi - 2004])

Environment Programming in MASWOA 2009 MINI-SCUOLA

TAG-BASED INTERACTIONS
• Environment supporting tag interactions to enable forms of

observation-based coordination in software MAS [Platon, Sabouret,
Honiden - 2006]

- interactions based on a (soft) body instead of speech acts, where
agents can attach a set of tags that can be observed by other agents

- opportunistic tag interactions occur when one agent receives
information about others without requesting it

(Figure from [Platon, Sabouret, Honiden - 2006])

Environment Programming in MASWOA 2009 MINI-SCUOLA

SPACE-BASED COORDINATION
• Coordination media are tuple spaces where agent associatively

retrieve, read and insert tuples [Gelernter, 1985]

- Linda coordination language

• coordination primitives providing basic synch. behaviour: in, out, rd

• Many extensions, several oriented to MAS and mobile agents
- e.g. TuCSoN [Omicini, Zambonelli - 1999], LIME [Murphy, Picco, Roman - 2001]

out(sum_task(3,1))

out(sum_result(1,5,6))

sum_result(1,5,6)

sum_task(1,5)
rd(sum_result(X,Y,Z))

in(sum_result(1,5,X))

out(sum_task(3,2))

sum_task(3,2)

Environment Programming in MASWOA 2009 MINI-SCUOLA

PROGRAMMABLE SPACES
• Coordination models allowing to shape the interaction space by

means of rules programming the coordination medium behaviour
- an example: Tuple Centres and ReSpecT language [Omicini, Denti - 2001]

• programmable tuple spaces

- by means of reactions (specified in ReSpecT) encapsulating the coordination
laws (functionalities) to be enforced by the tuple centre

• adopted in TuCSoN’s infrastructure

- tuple centres collected/distributed in TuCSoN nodes

taskB_res(3)

taskA_res(5)

reaction(out(taskA_res(R),(

 in_r(taskB_res(R1))

 out_r(taskC_todo(R,R1)))).

reaction(out(taskB_res(R),(

 in_r(taskA_res(R1))

 out_r(taskC_todo(R,R1)))).

in(taskC_todo(X,Y))

out(taskB_res(3))

out(taskA_res(5))

Environment Programming in MASWOA 2009 MINI-SCUOLA

E-INSTITUTIONS
• Environments for articulating and

regulating agent interaction in open MAS
[Noriega, 1997]

• The E-Institution is part of the environment
- realized by a collection of so-called

staff agents
• The application’s agent system consists of

so-called external agents
- external to the institution

• External agents interact through the
environment via a set of specialized
agents called governor
- one governor for each agent

• Norms are used to structures and
regulate interactions in the environment
- social laws enacted by the coordinated

actions of governors and staff agents

Environment Programming in MASWOA 2009 MINI-SCUOLA

E-INSTITUTIONS MIDDLEWARE

• AMELI middleware [Esteva et al., 2004]

- concrete architecture for e-Institutions

- social layer on top of the communication layer

• staff agents implemented by scene managers, institution
managers, transition managers

(Figures taken from [Esteva et al., 2004])

Environment Programming in MASWOA 2009 MINI-SCUOLA

A NEW PERSPECTIVE ON THE
ROLE OF THE ENVIRONMENT

• Environment as a first-class abstraction in MAS
- considering environment as an explicit part of the MAS

- providing an exploitable design & programming
abstraction to build MAS applications

• Outcome
- distinguishing clearly between the responsibilities of

agent and environment both supports separation of
concerns in MAS

- improving the engineering practice

Environment Programming in MASWOA 2009 MINI-SCUOLA

BASIC SUPPORT LEVELS

• Three levels
- basic level

- abstraction level

- interaction-mediation level

[Weyns, Omicini, Odell - 2007]

Environment Programming in MASWOA 2009 MINI-SCUOLA

BASIC LEVEL

• The environment enables agents to access the deployment
context
- i.e. the hardware and software and external resources with which

the MAS interacts

• sensors and actuators, a printer, a network,a database, a Web service, etc.

(Figure from [Weyns, Omicini, Odell - 2007])

Environment Programming in MASWOA 2009 MINI-SCUOLA

ABSTRACTION LEVEL

• Bridges the conceptual gap between the agent abstraction
and low-level details of the deployment context
- shields low-level details of the deployment context

(Figure from [Weyns, Omicini, Odell - 2007])

Environment Programming in MASWOA 2009 MINI-SCUOLA

INTERACTION-MEDIATION LEVEL

• Regulate the access to shared resources

• Mediate interaction between agents

(Figure from [Weyns, Omicini, Odell - 2007])

Environment Programming in MASWOA 2009 MINI-SCUOLA

ENVIRONMENT DEFINITION
REVISED

The environment is a first-class abstraction that
provides the surrounding conditions for agents
to exist and that mediates both the interaction
among agents and the access to resources

[Weyns, Omicini, Odell - 2007]

Environment Programming in MASWOA 2009 MINI-SCUOLA

HIGHLIGHTS

• First-class abstraction
- environment as an independent building block in the MAS

- encapsulating its own clear-cut responsibilities, irrespective of the
agents

• The environment provides the surrounding conditions for
agents to exist
- environment as an essential part of every MAS

- the part of the world with which the agents interact, in which the
effects of the agents will be observed and evaluated

Environment Programming in MASWOA 2009 MINI-SCUOLA

HIGHLIGHTS
• Environment as a glue

- on their own, agents are just individual loci of control.

- to build a useful system out of individual agents, agents must be able to
interact

- the environment provides the glue that connects agents into a working
system

• the environment mediates both the interaction among agents and
the access to resources
- the environment can be an active entity with specific responsibilities in

the MAS

- it provides a medium for sharing information and mediating coordination
among agents

• as a mediator, the environment not only enables interaction, it also constrains it

• as such, the environment provides a design space that can be exploited by the
designer

Environment Programming in MASWOA 2009 MINI-SCUOLA

RESPONSIBILITIES

• Structuring the MAS
- the environment is first of all a shared “space” for the agents,

resources, and services which structures the whole system

- different forms of structuring can be distinguished

• physical structure

- refers to spatial structure, topology, and possibly distribution, see e.g.,

• communication structure

- refers to infrastructure for message transfer, infrastructure for
stigmergy, or support for implicit communication

• social structure

- refers to the organizational structure of the environment in terms of
roles, groups, societies

Environment Programming in MASWOA 2009 MINI-SCUOLA

RESPONSIBILITIES

• Embedding resources and services
- resources and services can be situated either in the physical

structure or in the abstraction layer introduced by the environment

- the environment should provide support at the abstraction level
shielding low-level details of resources and services to the agents

• Encapsulating a state and processes
- besides the activity of the agents, the environment can have

processes of its own, independent of agents

• example: evaporation, aggregation, and diffusion of digital pheromones

- It may also provide support for maintaining agent-related state

• for example, the normative state of an electronic institution or tags for
reputation mechanisms

Environment Programming in MASWOA 2009 MINI-SCUOLA

RESPONSIBILITIES

• Ruling and mediating function
- the environment can define different types of rules on all

entities in the MAS.

• constraints imposed by the domain at hand or laws imposed by the
designer

• may restrict the access of specific resources or services to particular
types of agents, or determine the outcome of agent interactions.

- preserving the agent system in a consistent state according to
the properties and requirements of the application domain

• Examples
- coordination infrastructures

- e-Institutions

Environment Programming in MASWOA 2009 MINI-SCUOLA

 BASIC PROPERTIES:
OBSERVABILITY

• Observability
- providing mechanims to agents for inspecting the

different structures of the environment

• as well as the resources, services, and possibly external state
of other agents

- observation of a structure is typically limited to the
current context in which the agent finds itself

• spatial context, communication context, and social context

- related to observability is the semantic description of the
domain

• which can be defined by an environment ontology

• covering the different structures of the environment

- as well as the observable characteristics of resources,
services and agents, and possibly the regulating laws

Environment Programming in MASWOA 2009 MINI-SCUOLA

BASIC PROPERTIES:
ACCESSIBILITY

• Accessibility
- agents must be able to access the different structures of

the environment

• as well as its resources, services, and possibly external state of
other agents

- as for observability, accessing a structure is limited to the
current context in which the agent finds itself

- in general, resources can be perceived, modified,
generated, or consumed by agents

• services on the other hand provide functionality to the agents
on their request

• the extent to which agents are able to access a particular
resource or service may depend on several factors such as the
nature of the resource or service, the capabilities of the agent,
and the (current) interrelationships with other resources,
services, or agents

Environment Programming in MASWOA 2009 MINI-SCUOLA

A REFERENCE ABSTRACT
ARCHITECTURE

(Figure from [Weyns, Omicini, Odell - 2007])

Environment Programming in MASWOA 2009 MINI-SCUOLA

ENVIRONMENT AS
AN ABSTRACTION LAYER:

EXTENDING THE VIEW

• Back to the abstraction level support
- providing abstractions to bridge the gap to the deployment context

• Generalisation
- proving abstractions to model as first-order entities of the agents

world any kind of resource and tools specifically designed to be
exploited by agents to support their individual and collective work

- first-class design abstraction for sw engineers + first-order runtime
abstractions for agents

Environment Programming in MASWOA 2009 MINI-SCUOLA

GIVING AGENTS
THEIR FIRST-CLASS WORLD

• Environment as a shared computational world that agents can
use but also construct / adapt / extend for their individual and
collective purposes
- beyond pure observability and accessibility

- runtime perspective (vs. design time)

• Opening new perspectives
- in particular for MAS composed by cognitive agents

Environment Programming in MASWOA 2009 MINI-SCUOLA

DESIGNING AND PROGRAMMING
AGENTSʼ WORLD

• Looking for general-purpose approaches for conceiving,
designing, programming, executing the environment as
agents’ world
- orthogonality
- generality
- expressiveness

• Uniformly integrating different MAS aspects
- coordination, organisation, institutions

• Concrete models and technologies: examples
- AGRE / AGREEN / MASQ
- A&A and CArtAgO

- GOLEM

[Ferber, Michel, Baez - 2005] [Báez-Barranco,Stratulat, Ferber - 2007]

[Bromuri, Stathis - 2008]

[Ricci, Viroli, Omicini - 2007][Omicini, Ricci, Viroli - 2008]

Environment Programming in MASWOA 2009 MINI-SCUOLA

• Agents’ worlds as human cooperative environments
- workspaces containing artifacts that agents create, share, use,

adapt for their work [Ricci, Viroli, Omicini - 2007][Omicini, Ricci, Viroli -
2008]

• Main inspiration from Activity Theory

AGENTS & ARTIFACTS (A&A)

WHITEBOARD
artifact

ARCHIVE
artifact

COM. CHANNEL
artifact

TASK SCHEDULER
artifact

RESOURCE
artifact

CLOCK
artifact

BAKERY

workspace

agents can join
dynamically the workspace

[Ricci, Omicini, Denti - 2003]

Environment Programming in MASWOA 2009 MINI-SCUOLA

agent

agent
agent

an artifact

artifacts

Environment Programming in MASWOA 2009 MINI-SCUOLA

A&A BASIC CONCEPTS
• Agents

- autonomous, goal/task-oriented entities

• pro-activity, reactivity, social abilities, etc.

- create and co-use artifacts for supporting their activities
• besides direct communication

• Artifacts
- non-autonomous, function-oriented entities

• controllable and observable

- modelling the resources and tools used by agents

• designed by MAS programmers

• first-class entities for agents

• Workspaces
- grouping agents & artifacts
- defining the topology of the computational environment

Environment Programming in MASWOA 2009 MINI-SCUOLA

A&A META-MODEL

Artifact
Usage

Interface

Usage Interface
Control

name

params

Operation

trigger

control

Observable
Event

generate

Agent
11 use

perceive

Observable
Property

name

value

perceive

observe

update

Manual
functions

operating instructions

1 consult

Workspace
join

quit

Work
Environment

Environment Programming in MASWOA 2009 MINI-SCUOLA

COORDINATION ARTIFACTS

• Artifacts designed and programmed to provide coordination
functionalities for agents
- enabling and mediating agent interaction

• mediated interaction

- encapsulating coordination laws

• constructing and constraining the interaction space

• Enabling the design and programming of MAS interaction
- by shaping the tools that agents use to interact and coordinate

• Environment-based coordination
- complimentary approach to coordination based on direct interaction
- generality

• implementing any kind of coordination medium or mechanism for MAS

[Omicini, Ricci, Viroli, Castelfranchi, Tummolini - 2004]

Environment Programming in MASWOA 2009 MINI-SCUOLA

WRAP-UP
• Environment as first-class abstraction

- suitable locus where sw engineers can encapsulate
functionalities of the MAS, besides agents

• related to communication, coordination, organisation, security

• Environment as an abstraction layer for modelling and
engineering agents’ world

- composed by environmental abstractions (e.g. artifacts)
that agents perceive as first-order entities of their world

• resources and tools that agents observe, use, adapt,
manipulate

PART THREE
ENVIRONMENT PROGRAMMING

WOA 2009 MINI-SCUOLA
ENVIRONMENT PROGRAMMING IN

MULTI-AGENT SYSTEMS

Environment Programming in MASWOA 2009 MINI-SCUOLA

MULTI-AGENT SYSTEM PROGRAMMING
PERSPECTIVE

• Agent-Oriented Programing and MAS programming in a
software engineering perspective
- agents (and MAS) as a paradigm to design and program

software systems

• computer programming perspective

- computational models, languages,...

• software engineering perspective

- architectures, methodologies, specification, verification,...

• Focus on the (programming) language level
- integrating environment programming with agent programming

(languages)

Environment Programming in MASWOA 2009 MINI-SCUOLA

ENVIRONMENT PROGRAMMING

• Environment in the loop of MAS desing and programming
- environment as first-class design & programming abstraction

• software designers and engineers perspective

• programming MAS = programming Agents + programming Environment

- environment as first-class runtime abstraction for agents

• agent perspective

• to be observed, used, adapted, constructed, ...

• Defining computational and programming models also for
the environment part

Environment Programming in MASWOA 2009 MINI-SCUOLA

PROGRAMMING MODEL:
DESIDERATA (1/2)

• Abstraction
- keeping the agent abstraction level

• e.g. no agents sharing and calling OO objects

- effective programming models

• for controllable and observable computational entities

• Modularity
- away from the monolithic and centralised view

• Orthogonality
- wrt agent models, architectures, platforms

- support for heterogeneous systems

Environment Programming in MASWOA 2009 MINI-SCUOLA

PROGRAMMING MODEL:
DESIDERATA (2/2)

• (Dynamic) extendibility
- dynamic construction, replacement, extension of

environment parts

- support for open systems

• Reusability
- reuse of environment parts in different application

contexts / domains

Environment Programming in MASWOA 2009 MINI-SCUOLA

ARTIFACT-BASED PROGRAMMING
MODEL (RECALL)

WHITEBOARD
artifact

ARCHIVE
artifact

COM. CHANNEL
artifact

TASK SCHEDULER
artifact

RESOURCE
artifact

CLOCK
artifact

BAKERY

workspace

agents can join
dynamically the workspace

Environment Programming in MASWOA 2009 MINI-SCUOLA

 ABSTRACTION & MODULARIZATION
MAS

AGENTS

wsp

wsp

• Abstraction

- artifacts as first-class
resources and tools for agents

• Modularization

- artifacts as dynamic reusable
modules encapsulating
functionalities, organized in
workspaces

• distribution

Environment Programming in MASWOA 2009 MINI-SCUOLA

ABSTRACTION LAYER (1/2)

EXTERNAL

WORLD
(PHYSICAL OR

COMPUTATIONAL)

HUMAN

USERS

MAS

AGENTS

wsp

wsp

gui

printer

• Using artifacts to represent
or interact with external
resources / users

Environment Programming in MASWOA 2009 MINI-SCUOLA

ABSTRACTION LAYER (2/2)

• Using artifacts to represent internal
resources providing some kind of
functionalities to agents

- e.g. coordinating functionalities,
such as blackboard

- e.g. a personal agenda,
enhancing agent capabilities

MAS

AGENTS

wsp

wsp

blackboard

personal agenda (ext. memory)

Environment Programming in MASWOA 2009 MINI-SCUOLA

A&A META-MODEL OVERVIEW

Artifact
Usage

Interface

Usage Interface
Control

name

params

Operation

trigger

control

Observable
Event

generate

Agent
11 use

perceive

Observable
Property

name

value

perceive

observe

update

Manual
functions

operating instructions

1 consult

Workspace
join

quit

Work
Environment

Environment Programming in MASWOA 2009 MINI-SCUOLA

ARTIFACT MODEL
- “COFFEE MACHINE METAPHOR” -

OpControlName(Params)

OpControlName(Params)

...

Value

ARTIFACT

MANUAL

OBSERVABLE

EVENTS

GENERATION
<EvName,Params>

OPERATION X

LINK

INTERFACE

OPERATION Y

OBSERVABLE

PROPERTIES

USAGE

INTERFACE

ObsPropName

ValueObsPropName

......

Environment Programming in MASWOA 2009 MINI-SCUOLA

EXAMPLES

put

n_items 0

max_items 100

get

a bounded buffer

inc

count 5

reset

a counter

switch

state true

a flag

setTodo

last_todo ...

cancelTodo

next_todo check_plant

an agenda

...

GetLastTradePrice

a Stock Quote Web Service

availablestate

...wsdl

postEvent

registerForEvs

clearEvents

an event service

query

createTable

addRecord

a data-base

...

1001n_records

table_names ...

... ...

in

rd

out

a tuple space

Environment Programming in MASWOA 2009 MINI-SCUOLA

AGENT-ARTIFACT INTERACTION

• Based on the concept of use and observation
- triggering and controlling the execution of operations by

acting on artifact usage interface

- perceiving events generated by operation execution

• as percepts concerning events happening in the artifact

- perceiving artifact observable properties

• as percepts concerning the state of the artifact

Environment Programming in MASWOA 2009 MINI-SCUOLA

uiControl(X)

...

AGENT
OPERATION EXECUTION

ValueObsPropName

ValueObsPropName

...

INTERACTION MODEL: USE

• artifact operation execution
- asynchronous wrt agent

- possibly a process structured in multiple atomic steps

Environment Programming in MASWOA 2009 MINI-SCUOLA

INTERACTION MODEL: USE

• use action
- acting on op. controls to trigger op execution

- synchronisation point with artifact time/state

uiControl(X)

ValueObsPropName

ValueObsPropName

......

AGENT

use
uiControl(x)

Environment Programming in MASWOA 2009 MINI-SCUOLA

uiControl(X)

ValueObsPropName

AGENT

EVENTS
OBS PROPERTIES

CHANGE

INTERACTION MODEL: USE

• observable effects
- observable events & changes in obs property

- perceived by agents either as (external) events

Environment Programming in MASWOA 2009 MINI-SCUOLA

uiControl(X)

ValuePName

AGENT

observe

property
(+PName,?Value)

• observeProperty action
- value of an obs. property as action feedback

- no interaction

INTERACTION MODEL: OBSERVATION

Environment Programming in MASWOA 2009 MINI-SCUOLA

• focus / stopFocus action
- start / stop a continuous observation of an artifact

• possibly specifying filters

- observable properties mapped into percepts

INTERACTION MODEL: OBSERVATION

uiControl(X)

ValueObsPropName

ValueObsPropName

......

AGENT

focus

Belief base

(or alike)

ObsPropName(Value).
ObsPropName(Value).
...

Environment Programming in MASWOA 2009 MINI-SCUOLA

uiControl(X)

ValueObsPropName

Value

AGENT

USE

Belief base

(or alike)

ObsPropName(Value).
ObsPropName(Value).
...

ObsPropName

• continuous observation
- observable events (> agent events)

- observable properties (> belief base update)

INTERACTION MODEL: OBSERVATION

Environment Programming in MASWOA 2009 MINI-SCUOLA

ARTIFACT MODEL HIGHLIGHTS

• Artifacts as controllable and observable devices
- operation execution as a controllable process

• possibly long-term, articulated

- two observable levels

• properties, events

- transparent management of concurrency issues

• synchronisation, mutual-exclusion, etc

• Composability through linking
- also across workspaces

• Cognitive use of artifacts through the manual
- function description, operating instructions

Environment Programming in MASWOA 2009 MINI-SCUOLA

CATEGORIES OF ARTIFACTS

• Personal artifacts
- designed to provide functionalities for a single agent use

• e.g. agenda

• Social artifacts
- designed to provide some kind of global functionalities

• communication, coordination, organisation...

• e.g. blackboards, tuple spaces, bounded buffers, etc.

• Boundary artifacts
- designed to wrap the interaction with external systems or

to represent inside the MAS an external system

• e.g. data-base, GUI, Web Services, etc.

Environment Programming in MASWOA 2009 MINI-SCUOLA

CArtAgO
• Platform / infrastructure implementing the A&A

model
- runtime environment for executing (possibly

distributed) artifact-based environments
- Java-based programming model for defining artifacts
- set of basic API for agent plaforms to work wihin

artifact-based environment

• integration with heterogeneous agent programming
platforms

• Distributed and open MAS
- workspaces distributed on Internet nodes

• agents can join and work in multiple workspace at a time

- Role-Based Access Control (RBAC) security model

• Open-source technology
- available at http://cartago.sourceforge.net

 [Ricci, Viroli, Omicini - 2006] [Ricci, Piunti, Viroli, Omicini - 2009]

[Ricci, Piunti, Lacay, Bordini, Hubner, Dastani - 2008]

http://cartago.sourceforge.net
http://cartago.sourceforge.net

Environment Programming in MASWOA 2009 MINI-SCUOLA

INTEGRATION

• Integration with existing agent platforms
- available bridges: Jason, Jadex, AgentFactory, simpA

• ongoing: 2APL, Jade

• Outcome
- developing open and heterogenous MAS

- different perspective on interoperability

• sharing and working in a common work environment

• common data-model based on OOP

Environment Programming in MASWOA 2009 MINI-SCUOLA

CArtAgO ARCHITECTURE

Agent Framworks /
Middlewares

CARTAGO

M
A

S

A
p
p
lic

a
ti
o
n

Artifact-based working environmentsApplication Agents

E
x
e
c
u
ti
o
n

P
la

tf
o
rm

MAS
Middleware

Layer

Application
Specific
Logic

workflow
engine

blackboard

shared
kb

map

Any

OS

JVM

OS

JVM

workspaces

artifacts

agent
bodies

JASON

3APL

JADE

workspaces

JADEX

...

JASON

shared

task

scheduler

shared

KB

blackboard

map

Environment Programming in MASWOA 2009 MINI-SCUOLA

CArtAgO ABSTRACT API (CORE)
• Extending agent actions with a basic set to work within

artifact-based environments

workspace
management

joinWsp(Name,?WspId,+Node,+Role,+Cred)
quitWsp(Wid)

artifact use
use(Aid,UICntrName(Params),+Sensor,+Timeout,+Filter)
sense(Sensor,?Perception,+Filter,+Timeout)

artifact observation
observeProperty(Aid,PName,?PValue)
focus(Aid,+Sensor,+Filter)
stopFocus(Aid)

artifact instantiation,
discovery,

management

makeArtifact(Name,Template,+ArtifactConfig,?Aid)
lookupArtifact(Name,?Aid)
disposeArtifact(Aid)

Environment Programming in MASWOA 2009 MINI-SCUOLA

RAW AGENT API

joinWsp
quitWsp

use
sense
observeProp
focus
stopFocus

+
basic set of artifacts available
in each workspace

- factory
- registry
- security-registry
- console
...

implementing non primitive actions:
makeArtifact => use factory
lookupArtifact => use registry
...

Environment Programming in MASWOA 2009 MINI-SCUOLA

CArtAgO API TASTE
EX1: THE ~SIMPLEST ARTIFACT

public class Counter extends Artifact {
 @OPERATION void init(){
 defineObsProperty("count",0);
 }
	
 @OPERATION void inc(){
 int count = getObsProperty("count").intValue();
 updateObsProperty("count",count+1);
 }
}

!create_and_use.

+!create_and_use : true <-
 !setupTool(C);
 // first use
 cartago.use(C,inc);
 // second use
 cartago.use(C,inc,s0);
 cartago.sense(s0,op_exec_completed).

+!setupTool(C): true <-
 cartago.makeArtifact("ourCount",
 "Counter",C);

!observe.

+!observe : true <-
 ?myTool(C);
 cartago.focus(C).

+count(V) : V < 10 <-
 cartago.use(console,println(“count percept: “,V).
+count(V) [artifact(A)] : V >= 10 <-
 cartago.use(console,println(“stop observing.”);
 cartago.stopFocus(A).

+?myTool(CounterId): true <-
 cartago.lookupArtifact(“ourCount”,CounterId).
-?myTool(CounterId): true <-.wait(10); ?ourCount(C).

USER(S) OBSERVER(S)

• A shared counter

inc

count 5

OBSERVABLE PROPERTIES:

count: int

USAGE INTERFACE:

inc: { op_exec_started(inc),

 count(X),

 op_exec_completed(inc) }

AGENTS IN JASON

Environment Programming in MASWOA 2009 MINI-SCUOLA

CArtAgO API TASTE
EX2: USING UI CONTROLS WITH GUARDS

• bounded-buffer artifact for producers-consumers scenarios

public class BBuffer extends Artifact {
 private LinkedList<Item> items;

 @OPERATION void init(int nmax){
 items = new LinkedList<Item>();
 defineObsProperty("max_items",nmax);
 defineObsProperty("n_items",0);
 }

 @OPERATION(guard="bufferNotFull") void put(Item obj){
 items.add(obj);
 updateObsProperty("n_items",items.size()+1);
 }	
 @GUARD boolean bufferNotFull(Item obj){
 int maxItems = getObsProperty("max_items").intValue();
 return items.size() < maxItems;
 }
	
 @OPERATION(guard="itemAvailable") void get(){
 Item item = items.removeFirst();
 updateObsProperty("n_items",items.size()-1);
 signal("new_item",item);
 }	
 @GUARD boolean itemAvailable(){ return items.size() > 0; }
}

OBSERVABLE PROPERTIES:

n_items: int+

max_items: int

USAGE INTERFACE:

put(item:Item) / (n_items < max_items): {...}

get / (n_items >= 0) :

 { new_item(item:Item),...}

put

n_items 0

max_items 100

get

Environment Programming in MASWOA 2009 MINI-SCUOLA

CArtAgO API TASTE
PRODUCERS & CONSUMERS IN JASON

!produce.

+!produce: true <-
 !setupTools(Buffer);
 !produceItems.

+!produceItems : true <-
 ?nextItemToProduce(Item);
 cartago.use(myBuffer,put(Item));
 !!produceItems.

+?nextItemToProduce(Item) : true <- ...

+!setupTools(Buffer) : true <-

 cartago.makeArtifact("myBuffer",
 "BBuffer",[10],Buffer).
-!setupTools(Buffer) : true <-

 cartago.lookupArtifact("myBuffer",Buffer).

PRODUCERS

!consume.

+!consume: true <-
 ?bufferToUse(Buffer);
 !consumeItems.

+!consumeItems : true <-
 cartago.use(myBuffer,get,s0);
 cartago.sense(s0,new_item(Item));
 !consumeItem(Item);
 !!consumeItems.

+!consumeItem(Item) : true <- ...

+?bufferToUse(BufferId) : true <-
 cartago.lookupArtifact("myBuffer",BufferId).
-?bufferToUse(BufferId) : true <-

 .wait(50);
 ?bufferToUse(BufferId).

CONSUMERS

AGENTS IN JASON

Environment Programming in MASWOA 2009 MINI-SCUOLA

CArtAgO API TASTE
EX3: ARTIFACT WITH MULTI-STEP OPERATIONS

class SimpleSynchroniser extends Artifact {

 int nReady, nParticipants;

 @OPERATION void init(int nParticipants){
 defineObsProperty("all_ready",false);
 nReady = 0;
 this.nParticipants = nParticipants;
 }
	
 @OPERATION void ready(int nParticipants){
 nReady++;
 nextStep("setAllReady");
 }

 @OPSTEP(guard="allReady") void setAllReady(){
 updateObsProperty("all_ready",true);
 }

 @GUARD booolean allReady(){
 return nReady >= nParticipants;
 }
}

• simple synchronisation artifact
(~barrier)

ready

all_ready false

OBSERVABLE PROPERTIES:

all_ready: {true,false}

USAGE INTERFACE:

ready / true: { op_exec_completed }

Environment Programming in MASWOA 2009 MINI-SCUOLA

CArtAgO API TASTE
SYNCH USER (ACTIVE/REACTIVE)

!work.

+!work: true <-
 ...
 // locate the synch tool
 cartago.lookupArtifact(“mySynch”,Synch);
 // ready for synch
 cartago.use(Synch,ready,sid);
 // waiting all synchs
 cartago.sense(sid,op_exec_completed(“ready”);
 // all ready, go on.
 ...

SYNCH USER - WITH SENSOR

!work.

+!work: true <-
 ...
 // locate the synch tool
 cartago.lookupArtifact(“mySynch”,Synch);
 // observe it.
 cartago.focus(Synch);
 // ready for synch
 cartago.use(Synch,ready).

// react to all_ready(true) percept
+all_ready(true)[artifact(mySynch)] : true
 <-
 // all ready, go on.
 ...

SYNCH USER - REACTIVE

AGENTS IN JASON

Environment Programming in MASWOA 2009 MINI-SCUOLA

LINKABILITY

• Basic mechanism to enable inter-artifact interaction
- “linking” artifacts through interfaces (link interfaces)

• operations triggered by an artifact over an other artifact

• Useful to design & program distributed environments
- realised by set of artifacts linked together

- possibly hosted in different workspaces

WSP-X WSP-Y

linkedOp

Environment Programming in MASWOA 2009 MINI-SCUOLA

SOME EXISTING APPLICATIONS

• Organisational infrastructures
- ORA4MAS

• exploiting artifacts to build an organisational infrastructure

• SOA & Web Services
- CArtAgO-WS

• basic set of artifacts for building SOA/WS applications

- interacting with web services

- implementing web services

• programming SOA/WS applications as ensemble of (intelligent) agents
working inside workspaces

• Autonomic Computing & Virtualisation
- implementing autonomic distributed systems as set of (intelligent)

agents exploiting artifacts representing virtual machines

[Hubner, Boissier, Kitio, Ricci - 2009]

[Ricci, Denti, Piunti - 2009]

Environment Programming in MASWOA 2009 MINI-SCUOLA

WRAP-UP

• Environment programming
- environment as a programmable part of the MAS

- programming agents’ world for agents’ use

• Artifact-based computational & programming model
- artifacts as first-class abstraction to design and program

complex software environments

• usage interface, observable properties / events, linkability

- artifacts as first-order entities for agents

• interaction based on use and observation

• agents dynamically co-constructing, evolving, adapting their
world

WRAP-UP

WOA 2009 MINI-SCUOLA
ENVIRONMENT PROGRAMMING IN

MULTI-AGENT SYSTEMS

Environment Programming in MASWOA 2009 MINI-SCUOLA

SUM-UP

• Environment as a first-class design and
programming abstraction in AOSE and AOP
- encapsulating core functionalities for agent(s) work

- improving separation of concerns in MAS engineering

• Environment as an abstraction layer perspective
- defining such computational world that agents

dynamically exploit, adapt, change for their purposes

• General-purpose computational / programming
models / platforms
- orthogonal to agent models / architecture

- an example: artifacts and CArtAgO

Environment Programming in MASWOA 2009 MINI-SCUOLA

RESEARCH DIRECTIONS
- TWO SELECTED TOPICS -

• Cognitive use of the environment
- e.g. in the artifact-based environments: agents

dynamically selecting which artifacts to use and how to
use them

• link with semantic web & Service-Oriented research

• fundamental role of ontologies

- open MAS perspective

• Integrated platforms & standardisation
- towards a common model, ontology and platform for

environments in AOP and AOSE

- analogously to the FIPA initiative for ACL

Environment Programming in MASWOA 2009 MINI-SCUOLA

BIBLIOGRAPHY

• [Báez-Barranco, Stratulat, Ferber - 2007] A Unified Model for Physical and Social
Environments. A Unified Model for Physical and Social Environments. In [Weyns, Parunak,
Michel - 2007], Springer

• [Bordini, Hübner, Woodridge - 2007] Programming Multi-Agent Systems in AgentSpeak Using
Jason. John Wiley & Sons, Ltd, 2007.

• [Bromuri, Stathis - 2008] Situating Cognitive Agents in GOLEM. In D. Weyns, S.A. Brueckner,
and Y. Demazeau (Eds.): EEMMAS 2007, LNAI 5049, pp. 115–134, 2008.

• [Campos et al., 2009] Formalising Situatedness and Adaptation in Electronic Institutions.
Jordi Campos, Maite López-Sánchez, Juan Antonio Rodríguez-Aguilar, and Marc Esteva. In
"Coordination, Organizations, Institutions and Norms in Agent Systems IV", LNAI 5428/2009,
Springer

• [Dastani, Bobo, Meyer - 2007] Practical Extensions in Agent Programming Languages.
AAMASʼ07 2007 Honolulu, Hawaii USA

• [Esteva et al - 2004] AMELI: An Agent-based Middleware for Electronic Institutions. Marc
Esteva, Bruno Rosell, Juan A. Rodrıguez-Aguilar, Josep Ll. Arcos. AAMAS'04, July 19-23,
2004, New York, New York, USA.

• [Ferber, Michel, Baez - 2005] AGRE: Integrating environments with organizations. In [Weyns,
Parunak, Michel - 2005a], Springer-Verlag.

Environment Programming in MASWOA 2009 MINI-SCUOLA

BIBLIOGRAPHY

• [Ferber, 1999] Multi-Agent Systems, An Introduction to Distributed Artificial Intelligence.
Addison-Wesley, Great Britain

• [Ferber and Müller, 1996] Influences and reaction: A model of situated multiagent systems. In
M. Tokoro (Ed.), Second international conference on multi-agent systems (ICMAS 1996).
Kyoto, Japan, AAAI Press, Menlo Park, California, USA.

• [Gelernter, 1985] Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, January 1985.

• [Hubner, Boissier, Kitio, Ricci - 2009] Instrumenting multi-agent organisations with
organisational artifacts and agents: “Giving the organisational power back to the agents”.
Autonomous Agents and Multi-Agent Systems, April 2009. Springer-Verlag

• [Jennings 2001] An agent-based approach for building complex software systems. Commun.
ACM, 44(4):35-41.

• [Mamei, Zambonelli - 2005] Programming Stigmergic Coordination with the TOTA
Middleware. AAMAS'05, July 2529, 2005, Utrecht, Netherlands.

• [Mamei, Zambonelli - 2006] Field-based coordination for pervasive multiagent systems,
Springer. Series on Agent Technology. Springer-Verlag.

• [Murphy, Picco, Roman - 2001] LIME: A middleware for physical and logical mobility. In
Twenty-First international conference on distributed computing systems (ICDCS 2001) (p.
254). Washington, DC, USA, IEEE Computer Society.

Environment Programming in MASWOA 2009 MINI-SCUOLA

BIBLIOGRAPHY

• [Noriega, 1997] Agent-Mediated Auctions: The Fishmarket Metaphor. Number 8 in IIIA Phd
Monograph. 1997.

• [Omicini and Zambonelli - 1999] Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems, 2(3):251–269, Sept. 1999. Special Issue:
Coordination Mechanisms for Web Agents.

• [Omicini and Denti - 2001] From tuple spaces to tuple centres. Science of Computer
Programming, 41(3):277–294, Nov. 2001.

• [Omicini, Ricci, Viroli - 2008] Artifacts in the A&A meta-model for multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 17 (3), Dec. 2008

• [Omicini, Ricci, Viroli, Castelfranchi, Tummolini - 2004]. Coordination artifacts:

• Environment-based coordination for intelligent agents. In AAMASʼ04, volume 1, pages 286–
293, New York, USA, 19–23July 2004. ACM.

• [Omicini, Ossowski - 2003] Objective versus subjective coordination in the engineering of
agent systems, in M. Klusch, S. Bergamaschi, P. Edwards & P. Petta, eds, ʻIntelligent
Information Agents: An AgentLink Perspectiveʼ, Vol. 2586 of LNAI: State-of-the-Art Survey,
Springer-Verlag, pp. 179–202.

• [Parunak, Brueckner, Sauter - 2005] Parunak,V.,Brueckner, S., Sauter, J. (2005). Digital
pheromones for coordination of unmanned vehicles. In [Weyns, Parunak, Michel - 2005a].

Environment Programming in MASWOA 2009 MINI-SCUOLA

BIBLIOGRAPHY

• [Platon, Sabouret, Honiden - 2006] Tag Interactions in Multi-Agent Systems: Environment
Support. In [Weyns, Parunak, Michel - 2007], Springer

• [Pokahr, Braubach, Lamersdorf - 2005] Jadex: A BDI Reasoning Engine, Chapter of Multi-
Agent Programming, Kluwer Book, Editors: R. Bordini, M. Dastani, J. Dix and A. Seghrouchni.

• [Ricci, Viroli, Omicini - 2006] Construenda est CArtAgO: Toward an Infrastructure for Artifacts
in MAS. Proceedings of the International Symposium: "From Agent Theory to Agent
Implementation." (AT2AI-6). Cybernetics and Systems 2006, 18-21 April 2006

• [Ricci, Viroli, Omicini - 2007] CArtAgO : A Framework for Prototyping Artifact-Based
Environments in MAS. In [Weyns, Parunak, Michel - 2007], Springer

• [Ricci, Omicini, Denti - 2003]. Activity theory as a framework for MAS coordination. In P. Petta,
R. Tolksdorf & F. Zambonelli (Eds.), Engineering societies in the agents world III (ESAW
2002),Vol. 2577 of lecture notes in computer science. Springer-Verlag.

• [Ricci, Piunti, Lacay, Bordini, Hubner, Dastani - 2008] Integrating artifact-based environments
with heterogeneous agent-programming platforms. In Proceedings of 7th International
Conference on Agents and Multi Agents Systems (AAMAS08), 2008.

• [Ricci, Denti, Piunti 2009] A Platform for Developing SOA/WS Applications as Open and
Heterogeneous Multi-Agent Systems. Multi-Agent and Grid Systems. To appear

Environment Programming in MASWOA 2009 MINI-SCUOLA

BIBLIOGRAPHY
• [Ricci, Piunti, Viroli, Omicini - 2009] Environment programming in CArtAgO. In R. H. Bordini, M.

Dastani, J. Dix, and A. El Fallah-Seghrouchni, editors, Multi-Agent Programming: Languages,
Platforms and Applications, Vol. 2. Springer Verlag, 2009. To appear.

• [Ricci, Viroli, Omicini - 2007] The A&A programming model & technology for developing agent
environments in MAS. In M. Dastani, A. El Fallah Seghrouchni, A. Ricci, and M. Winikoff,
editors,Post-proceedings of the 5th International Workshop “Programming Multi-Agent
Systems” (PROMAS 2007), volume 4908 of LNAI, pages 91–109. Springer, 2007.

• [Russel and Norvig, 1995] Artificial Intelligence: A Modern Approach. Prentice Hall.

• [Stratulat, Ferber, Tranier - 2009] MASQ: towards an integral approach to interaction. Proc. of 8th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009), Decker, Sichman, Sierra
and Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary.

• [Weyns et al.] Weyns, D., Parunak,V.,Michel, F.,Holvoet, T.,Ferber, J. Environments formultiagent
systems, state-of-the-art and research challenges. In [Weyns, Parunak, Michel - 2005a], Springer-
Verlag.

• [Weyns, Omicini, and Odell - 2007] Environment as a first-class abstraction in multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 14(1):5–30, Feb. 2007. Special Issue on
Environments for Multi-agent Systems.

• [Wooldridge and Jennings, 1995] Intelligent Agents: Theory and Practice. The Knowledge
Engineering Review, 10(2):115-152

• [Wooldridge, 2002] An Introduction to MultiAgent Systems. John Wiley and Sons, Ltd. England

Environment Programming in MASWOA 2009 MINI-SCUOLA

BIBLIOGRAPHY
BOOKS / JOURNAL SPECIAL ISSUES

• [Weyns, Parunak - 2007] Journal of Autonomous Agents and Multi-Agent Systems. Special
Issue: Environment for Multi-Agent Systems, volume 14(1). D. Weyns and H. V. D. Parunak,
editors. Springer Netherlands, 2007.

• [Weyns, Parunak, Michel - 2005a] Environments for multiagent systems, first international
workshop (E4MAS 2004), New York, USA, 2005. Revised Selected Papers, Vol. 3374 of
lecture notes in computer science. Springer-Verlag

• [Weyns, Parunak, Michel - 2005b] Environments for multiagent systems II, second
international workshop (E4MAS 2005), Utrecht, The Netherlands, 2005. revised papers and
invited contributions, Vol. 3830 of lecture notes in computer science. Springer-Verlag

• [Weyns, Parunak, Michel - 2007] Environments for Multi-Agent Systems III, Third
International Workshop, E4MAS 2006, Hakodate, Japan, May 8, 2006, Selected Revised and
Invited Papers. Lecture Notes in Computer Science 4389 Springer 2007

• [Weyns, Brueckner, Demazeau] Engineering Environment-Mediated Multiagent Systems I
(EEMMAS 07).

