
Computational Logic and Agents
Miniscuola WOA 2009

Viviana Mascardi

University of Genoa – Department of Computer and Information Science

July, 8th, 2009

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 1 / 73



Outline

1 Computing with logic

2 Agents as Intentional Systems

3 Agent-0

4 AgentSpeak(L)
Jason: a Short Demo

5 Concurrent METATEM

6 IMPACT

7 Related work and conclusions

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 2 / 73



Computing with logic

Outline

1 Computing with logic

2 Agents as Intentional Systems

3 Agent-0

4 AgentSpeak(L)
Jason: a Short Demo

5 Concurrent METATEM

6 IMPACT

7 Related work and conclusions

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 3 / 73



Computing with logic

Computing with logic?

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 4 / 73



Computing with logic

Computing with logic?

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 4 / 73



Computing with logic

Deductive reasoning and formal logic

Deductive reasoning argues from the general to a specific instance.
The basic idea is that if something is true of a class of things in
general, this truth applies to all legitimate members of that class.

All human beings are mortal. Socrates is human.
Therefore, Socrates is mortal.

Formal Logic is a formal version of human deductive logic. It provides
a formal language with an unambiguous syntax and a precise
meaning, and it provides rules for manipulating expressions in a way
that respects this meaning.

∀X.(human(X)⇒ mortal(X)) human(Socrates)
mortal(Socrates)

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 5 / 73



Computing with logic

Deductive reasoning and formal logic

Deductive reasoning argues from the general to a specific instance.
The basic idea is that if something is true of a class of things in
general, this truth applies to all legitimate members of that class.

All human beings are mortal. Socrates is human.
Therefore, Socrates is mortal.

Formal Logic is a formal version of human deductive logic. It provides
a formal language with an unambiguous syntax and a precise
meaning, and it provides rules for manipulating expressions in a way
that respects this meaning.

∀X.(human(X)⇒ mortal(X)) human(Socrates)
mortal(Socrates)

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 5 / 73



Computing with logic

Computational logic

The existence of a formal language for representing information and
the existence of a corresponding set of mechanical manipulation rules
together make automated reasoning using computers possible.

Computational logic is a branch of mathematics that is concerned
with the theoretical underpinnings of automated reasoning. Like
Formal Logic, Computational Logic is concerned with precise syntax
and semantics and correctness and completeness of reasoning.
However, it is also concerned with efficiency.

mortal(X) :- human(X).
human(socrates).

?- mortal(socrates).
?- yes

?- mortal(Y).
?- Y = socrates ? ;
no

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 6 / 73



Computing with logic

Computational logic

The existence of a formal language for representing information and
the existence of a corresponding set of mechanical manipulation rules
together make automated reasoning using computers possible.
Computational logic is a branch of mathematics that is concerned
with the theoretical underpinnings of automated reasoning. Like
Formal Logic, Computational Logic is concerned with precise syntax
and semantics and correctness and completeness of reasoning.
However, it is also concerned with efficiency.

mortal(X) :- human(X).
human(socrates).

?- mortal(socrates).
?- yes

?- mortal(Y).
?- Y = socrates ? ;
no

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 6 / 73



Computing with logic

Computational logic

The existence of a formal language for representing information and
the existence of a corresponding set of mechanical manipulation rules
together make automated reasoning using computers possible.
Computational logic is a branch of mathematics that is concerned
with the theoretical underpinnings of automated reasoning. Like
Formal Logic, Computational Logic is concerned with precise syntax
and semantics and correctness and completeness of reasoning.
However, it is also concerned with efficiency.

mortal(X) :- human(X).
human(socrates).

?- mortal(socrates).
?- yes

?- mortal(Y).
?- Y = socrates ? ;
no

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 6 / 73



Computing with logic

Computational logic

The existence of a formal language for representing information and
the existence of a corresponding set of mechanical manipulation rules
together make automated reasoning using computers possible.
Computational logic is a branch of mathematics that is concerned
with the theoretical underpinnings of automated reasoning. Like
Formal Logic, Computational Logic is concerned with precise syntax
and semantics and correctness and completeness of reasoning.
However, it is also concerned with efficiency.

mortal(X) :- human(X).
human(socrates).

?- mortal(socrates).

?- yes

?- mortal(Y).
?- Y = socrates ? ;
no

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 6 / 73



Computing with logic

Computational logic

The existence of a formal language for representing information and
the existence of a corresponding set of mechanical manipulation rules
together make automated reasoning using computers possible.
Computational logic is a branch of mathematics that is concerned
with the theoretical underpinnings of automated reasoning. Like
Formal Logic, Computational Logic is concerned with precise syntax
and semantics and correctness and completeness of reasoning.
However, it is also concerned with efficiency.

mortal(X) :- human(X).
human(socrates).

?- mortal(socrates).
?- yes

?- mortal(Y).
?- Y = socrates ? ;
no

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 6 / 73



Computing with logic

Computational logic

The existence of a formal language for representing information and
the existence of a corresponding set of mechanical manipulation rules
together make automated reasoning using computers possible.
Computational logic is a branch of mathematics that is concerned
with the theoretical underpinnings of automated reasoning. Like
Formal Logic, Computational Logic is concerned with precise syntax
and semantics and correctness and completeness of reasoning.
However, it is also concerned with efficiency.

mortal(X) :- human(X).
human(socrates).

?- mortal(socrates).
?- yes

?- mortal(Y).

?- Y = socrates ? ;
no

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 6 / 73



Computing with logic

Computational logic

The existence of a formal language for representing information and
the existence of a corresponding set of mechanical manipulation rules
together make automated reasoning using computers possible.
Computational logic is a branch of mathematics that is concerned
with the theoretical underpinnings of automated reasoning. Like
Formal Logic, Computational Logic is concerned with precise syntax
and semantics and correctness and completeness of reasoning.
However, it is also concerned with efficiency.

mortal(X) :- human(X).
human(socrates).

?- mortal(socrates).
?- yes

?- mortal(Y).
?- Y = socrates ? ;
no

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 6 / 73



Agents as Intentional Systems

Outline

1 Computing with logic

2 Agents as Intentional Systems

3 Agent-0

4 AgentSpeak(L)
Jason: a Short Demo

5 Concurrent METATEM

6 IMPACT

7 Related work and conclusions

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 7 / 73



Agents as Intentional Systems

Intentional Systems

When explaining human activity, it is often useful to make statements
such as the following:

Janine took her umbrella because she believed it was going to rain.

Michael worked hard because he wanted to possess a PhD.

These statements make use of a “folk psychology”, by which human
behaviour is predicted and explained through the attribution of
attitudes, such as believing, wanting, hoping, fearing,...

The attitudes employed in such folk psychological descriptions are
called the intentional notions.

Intentional system = system made up of entities whose behaviour can
be predicted by the method of attributing belief, desires and rational
acumen.

[D. C. Dennett, The Intentional Stance, 1989]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 8 / 73



Agents as Intentional Systems

Intentional Systems

When explaining human activity, it is often useful to make statements
such as the following:

Janine took her umbrella because she believed it was going to rain.

Michael worked hard because he wanted to possess a PhD.

These statements make use of a “folk psychology”, by which human
behaviour is predicted and explained through the attribution of
attitudes, such as believing, wanting, hoping, fearing,...

The attitudes employed in such folk psychological descriptions are
called the intentional notions.

Intentional system = system made up of entities whose behaviour can
be predicted by the method of attributing belief, desires and rational
acumen.

[D. C. Dennett, The Intentional Stance, 1989]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 8 / 73



Agents as Intentional Systems

Intentional Systems

When explaining human activity, it is often useful to make statements
such as the following:

Janine took her umbrella because she believed it was going to rain.

Michael worked hard because he wanted to possess a PhD.

These statements make use of a “folk psychology”, by which human
behaviour is predicted and explained through the attribution of
attitudes, such as believing, wanting, hoping, fearing,...

The attitudes employed in such folk psychological descriptions are
called the intentional notions.

Intentional system = system made up of entities whose behaviour can
be predicted by the method of attributing belief, desires and rational
acumen.

[D. C. Dennett, The Intentional Stance, 1989]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 8 / 73



Agents as Intentional Systems

Intentional Systems

When explaining human activity, it is often useful to make statements
such as the following:

Janine took her umbrella because she believed it was going to rain.

Michael worked hard because he wanted to possess a PhD.

These statements make use of a “folk psychology”, by which human
behaviour is predicted and explained through the attribution of
attitudes, such as believing, wanting, hoping, fearing,...

The attitudes employed in such folk psychological descriptions are
called the intentional notions.

Intentional system = system made up of entities whose behaviour can
be predicted by the method of attributing belief, desires and rational
acumen.

[D. C. Dennett, The Intentional Stance, 1989]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 8 / 73



Agents as Intentional Systems

Intentional Systems

When explaining human activity, it is often useful to make statements
such as the following:

Janine took her umbrella because she believed it was going to rain.

Michael worked hard because he wanted to possess a PhD.

These statements make use of a “folk psychology”, by which human
behaviour is predicted and explained through the attribution of
attitudes, such as believing, wanting, hoping, fearing,...

The attitudes employed in such folk psychological descriptions are
called the intentional notions.

Intentional system = system made up of entities whose behaviour can
be predicted by the method of attributing belief, desires and rational
acumen.

[D. C. Dennett, The Intentional Stance, 1989]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 8 / 73



Agents as Intentional Systems

Agents, strong and weak definitions

An agent is an hardware or software system
situated
autonomous
flexible

reactive
proactive
social

N. Jennings, K. Sycara, M. Wooldridge, A Roadmap of Agent Research and
Development, JAAMAS 1(1), 1998

Besides being characterised by the notions identified by N. Jennings, K. Sycara, M.
Wooldridge (“weak” definition), an agent may be conceptualised following an
anthropomorphic approach (“strong” definition).

Y. Shoham, Agent-oriented programming, Artificial Intelligence, 60(1), 1993; A. S.
Rao, M. P. Georgeff, An abstract architecture for rational agents, KR&R-92

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 9 / 73



Agents as Intentional Systems

Agents, strong and weak definitions

An agent is an hardware or software system
situated
autonomous
flexible

reactive
proactive
social

N. Jennings, K. Sycara, M. Wooldridge, A Roadmap of Agent Research and
Development, JAAMAS 1(1), 1998

Besides being characterised by the notions identified by N. Jennings, K. Sycara, M.
Wooldridge (“weak” definition), an agent may be conceptualised following an
anthropomorphic approach (“strong” definition).

Y. Shoham, Agent-oriented programming, Artificial Intelligence, 60(1), 1993; A. S.
Rao, M. P. Georgeff, An abstract architecture for rational agents, KR&R-92

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 9 / 73



Agents as Intentional Systems

Agents, strong and weak definitions

An agent is an hardware or software system
situated
autonomous
flexible

reactive
proactive
social

N. Jennings, K. Sycara, M. Wooldridge, A Roadmap of Agent Research and
Development, JAAMAS 1(1), 1998

Besides being characterised by the notions identified by N. Jennings, K. Sycara, M.
Wooldridge (“weak” definition), an agent may be conceptualised following an
anthropomorphic approach (“strong” definition).

Y. Shoham, Agent-oriented programming, Artificial Intelligence, 60(1), 1993; A. S.
Rao, M. P. Georgeff, An abstract architecture for rational agents, KR&R-92

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 9 / 73



Agents as Intentional Systems

Agents as Intentional Systems

If we adhere to the “strong definition” of agents, intentional
systems are a suitable theory for agents.

The representation of intentional notions raises a set of delicate
technical questions, both on the syntactic and the semantic side.

Modal logic languages are suitable for specifying agents as
intentional systems.

Languages based on computational (modal) logic are suitable for
programming agents.

Axiomatised logic-based languages can undergo an axiomatic
verification; other languages which can be used for model
checking.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 10 / 73



Agents as Intentional Systems

Agents as Intentional Systems

If we adhere to the “strong definition” of agents, intentional
systems are a suitable theory for agents.

The representation of intentional notions raises a set of delicate
technical questions, both on the syntactic and the semantic side.

Modal logic languages are suitable for specifying agents as
intentional systems.

Languages based on computational (modal) logic are suitable for
programming agents.

Axiomatised logic-based languages can undergo an axiomatic
verification; other languages which can be used for model
checking.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 10 / 73



Agents as Intentional Systems

Agents as Intentional Systems

If we adhere to the “strong definition” of agents, intentional
systems are a suitable theory for agents.

The representation of intentional notions raises a set of delicate
technical questions, both on the syntactic and the semantic side.

Modal logic languages are suitable for specifying agents as
intentional systems.

Languages based on computational (modal) logic are suitable for
programming agents.

Axiomatised logic-based languages can undergo an axiomatic
verification; other languages which can be used for model
checking.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 10 / 73



Agents as Intentional Systems

Agents as Intentional Systems

If we adhere to the “strong definition” of agents, intentional
systems are a suitable theory for agents.

The representation of intentional notions raises a set of delicate
technical questions, both on the syntactic and the semantic side.

Modal logic languages are suitable for specifying agents as
intentional systems.

Languages based on computational (modal) logic are suitable for
programming agents.

Axiomatised logic-based languages can undergo an axiomatic
verification; other languages which can be used for model
checking.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 10 / 73



Agents as Intentional Systems

Agents as Intentional Systems

If we adhere to the “strong definition” of agents, intentional
systems are a suitable theory for agents.

The representation of intentional notions raises a set of delicate
technical questions, both on the syntactic and the semantic side.

Modal logic languages are suitable for specifying agents as
intentional systems.

Languages based on computational (modal) logic are suitable for
programming agents.

Axiomatised logic-based languages can undergo an axiomatic
verification; other languages which can be used for model
checking.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 10 / 73



Agents as Intentional Systems

Modal Logic

Modal logic is an extension of classical logic with (generally) a new
connective 2 and its derivable counterpart ♦, known as necessity and
possibility respectively.

If a formula 2p is true, it means that p is necessarily true, i.e. true in
every possible scenario, and ♦p means that p is possibly true, i.e. true
in at least one possible scenario.

It is possible to define ♦ in terms of 2:

♦p ⇔ ¬2¬p

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 11 / 73



Agents as Intentional Systems

Modal Logic

Modal logic is an extension of classical logic with (generally) a new
connective 2 and its derivable counterpart ♦, known as necessity and
possibility respectively.

If a formula 2p is true, it means that p is necessarily true, i.e. true in
every possible scenario, and ♦p means that p is possibly true, i.e. true
in at least one possible scenario.

It is possible to define ♦ in terms of 2:

♦p ⇔ ¬2¬p

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 11 / 73



Agents as Intentional Systems

Modal Logic

Modal logic is an extension of classical logic with (generally) a new
connective 2 and its derivable counterpart ♦, known as necessity and
possibility respectively.

If a formula 2p is true, it means that p is necessarily true, i.e. true in
every possible scenario, and ♦p means that p is possibly true, i.e. true
in at least one possible scenario.

It is possible to define ♦ in terms of 2:

♦p ⇔ ¬2¬p

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 11 / 73



Agents as Intentional Systems

Modal Logic

Different kinds of modal logics exist:
epistemic logic
temporal logic
deontic logic
dynamic logic
... and combinations of them (BDI logic, KARO logic, ...)

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 12 / 73



Agent-0

Outline

1 Computing with logic

2 Agents as Intentional Systems

3 Agent-0

4 AgentSpeak(L)
Jason: a Short Demo

5 Concurrent METATEM

6 IMPACT

7 Related work and conclusions

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 13 / 73



Agent-0

AGENT-0

In the already cited paper “Agent-oriented programming, Artificial
Intelligence 60(1), 1993”, Shoham proposes that a fully developed
AOP (“Agent-Oriented Programming”) system will have three
components:

1 a logical system for defining the mental state of agents;

2 an interpreted programming language for programming agents;

3 an agentification process, for compiling agent programs into
low-level executable systems.

However, he only describes the first two components.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 14 / 73



Agent-0

AGENT-0

In the already cited paper “Agent-oriented programming, Artificial
Intelligence 60(1), 1993”, Shoham proposes that a fully developed
AOP (“Agent-Oriented Programming”) system will have three
components:

1 a logical system for defining the mental state of agents;

2 an interpreted programming language for programming agents;

3 an agentification process, for compiling agent programs into
low-level executable systems.

However, he only describes the first two components.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 14 / 73



Agent-0

AGENT-0

In the already cited paper “Agent-oriented programming, Artificial
Intelligence 60(1), 1993”, Shoham proposes that a fully developed
AOP (“Agent-Oriented Programming”) system will have three
components:

1 a logical system for defining the mental state of agents;

2 an interpreted programming language for programming agents;

3 an agentification process, for compiling agent programs into
low-level executable systems.

However, he only describes the first two components.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 14 / 73



Agent-0

AGENT-0

In the already cited paper “Agent-oriented programming, Artificial
Intelligence 60(1), 1993”, Shoham proposes that a fully developed
AOP (“Agent-Oriented Programming”) system will have three
components:

1 a logical system for defining the mental state of agents;

2 an interpreted programming language for programming agents;

3 an agentification process, for compiling agent programs into
low-level executable systems.

However, he only describes the first two components.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 14 / 73



Agent-0 The father

AGENT-0: the father

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 15 / 73



Agent-0 The logic behind

AGENT-0: the logic behind it

BDI logic, combination of:
temporal logic (linear time in Cohen and Levesque, branching time
in Rao and Georgeff)
modal logic(s) of belief, desires & goals (intentions)

The modalities of Rao and Georgeff’s BDI logic are BEL(φ), GOAL(φ),
INTEND(φ).

[P.R. Cohen and H.J. Levesque. Intention is choice with commitment.
Artificial Intelligence, 1990]
[A. S. Rao and M. P. Georgeff. Decision Procedures for BDI Logics.
Journal of Logic and Computation, 1998]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 16 / 73



Agent-0 The logic behind

AGENT-0: the logic behind it

BDI logic, combination of:
temporal logic (linear time in Cohen and Levesque, branching time
in Rao and Georgeff)
modal logic(s) of belief, desires & goals (intentions)

The modalities of Rao and Georgeff’s BDI logic are BEL(φ), GOAL(φ),
INTEND(φ).

[P.R. Cohen and H.J. Levesque. Intention is choice with commitment.
Artificial Intelligence, 1990]
[A. S. Rao and M. P. Georgeff. Decision Procedures for BDI Logics.
Journal of Logic and Computation, 1998]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 16 / 73



Agent-0 The logic behind

AGENT-0: the logic behind it

BDI logic, combination of:
temporal logic (linear time in Cohen and Levesque, branching time
in Rao and Georgeff)
modal logic(s) of belief, desires & goals (intentions)

The modalities of Rao and Georgeff’s BDI logic are BEL(φ), GOAL(φ),
INTEND(φ).

[P.R. Cohen and H.J. Levesque. Intention is choice with commitment.
Artificial Intelligence, 1990]
[A. S. Rao and M. P. Georgeff. Decision Procedures for BDI Logics.
Journal of Logic and Computation, 1998]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 16 / 73



Agent-0 The logic behind

AGENT-0: the logic behind it

Which relationships among BDI modalities?
Some possible axioms...

INTEND(does(e))⇒ does(e)
(intention leading to action)
done(e)⇒ BEL(done(e))
(awareness of primitive events)
INTEND(φ)⇒ inevitable ♦(¬ INTEND(φ))
(no infinite deferral)

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 17 / 73



Agent-0 The logic behind

AGENT-0: the logic behind it

Which relationships among BDI modalities?
Some possible axioms...

INTEND(does(e))⇒ does(e)
(intention leading to action)

done(e)⇒ BEL(done(e))
(awareness of primitive events)
INTEND(φ)⇒ inevitable ♦(¬ INTEND(φ))
(no infinite deferral)

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 17 / 73



Agent-0 The logic behind

AGENT-0: the logic behind it

Which relationships among BDI modalities?
Some possible axioms...

INTEND(does(e))⇒ does(e)
(intention leading to action)
done(e)⇒ BEL(done(e))
(awareness of primitive events)

INTEND(φ)⇒ inevitable ♦(¬ INTEND(φ))
(no infinite deferral)

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 17 / 73



Agent-0 The logic behind

AGENT-0: the logic behind it

Which relationships among BDI modalities?
Some possible axioms...

INTEND(does(e))⇒ does(e)
(intention leading to action)
done(e)⇒ BEL(done(e))
(awareness of primitive events)
INTEND(φ)⇒ inevitable ♦(¬ INTEND(φ))
(no infinite deferral)

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 17 / 73



Agent-0 The syntax

AGENT-0: the syntax

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 18 / 73



Agent-0 The syntax

AGENT-0: syntax

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 19 / 73



Agent-0 The syntax

AGENT-0: the syntax

An AGENT-0 program consists of a knowledge base made up of facts,
a set of capabilities and a set of commitment rules (together with all
the “bricks” for composing them).

Facts are atomic sentences of a simple temporal language: (t atom),
(NOT (t atom)).
Example: (0 (stored orange 1000)).

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 20 / 73



Agent-0 The syntax

AGENT-0: the syntax

An AGENT-0 program consists of a knowledge base made up of facts,
a set of capabilities and a set of commitment rules (together with all
the “bricks” for composing them).

Facts are atomic sentences of a simple temporal language: (t atom),
(NOT (t atom)).
Example: (0 (stored orange 1000)).

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 20 / 73



Agent-0 The syntax

AGENT-0: the syntax

Capabilities have the form
(action mentalcondition)

meaning that the agent is capable of performing action if
mentalcondition is true.

Commitment rules have the form
(COMMIT messagecondition mentalcondition (agent action)*)

where messagecondition and mentalcondition are message and
mental conditions, resp., agent is the name of the agent toward which
the commitment is taken, action is an action and * means “zero or
more”.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 21 / 73



Agent-0 The syntax

AGENT-0: the syntax

Capabilities have the form
(action mentalcondition)

meaning that the agent is capable of performing action if
mentalcondition is true.

Commitment rules have the form
(COMMIT messagecondition mentalcondition (agent action)*)

where messagecondition and mentalcondition are message and
mental conditions, resp., agent is the name of the agent toward which
the commitment is taken, action is an action and * means “zero or
more”.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 21 / 73



Agent-0 The syntax

AGENT-0: the syntax

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 22 / 73



Agent-0 The semantics

AGENT-0: the semantics

No formal semantics for the language is given.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 23 / 73



Agent-0 The interpreter

AGENT-0: the interpreter

The AGENT-0 engine is characterized by the following two-step cycle:
1 Read the current messages and update beliefs and commitments.
2 Execute the commitments for the current time, possibly resulting

in further belief change.

Actions to which agents can be committed include communicative
ones such as informing and requesting, as well as arbitrary private
actions.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 24 / 73



Agent-0 The interpreter

AGENT-0: the interpreter

The AGENT-0 engine is characterized by the following two-step cycle:
1 Read the current messages and update beliefs and commitments.
2 Execute the commitments for the current time, possibly resulting

in further belief change.

Actions to which agents can be committed include communicative
ones such as informing and requesting, as well as arbitrary private
actions.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 24 / 73



Agent-0 The interpreter

AGENT-0: the interpreter

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 25 / 73



Agent-0 The implementation

AGENT-0: the implementations

A prototype AGENT-0 interpreter has been implemented in Common
Lisp and has been installed on Sun/Unix, DecStation/Ultrix and
Macintosh computers.

A separate implementation has been developed by Hewlett Packard as
part of a joint project to incorporate AOP in the New WaveTM

architecture.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 26 / 73



Agent-0 The implementation

AGENT-0: the implementations

A prototype AGENT-0 interpreter has been implemented in Common
Lisp and has been installed on Sun/Unix, DecStation/Ultrix and
Macintosh computers.

A separate implementation has been developed by Hewlett Packard as
part of a joint project to incorporate AOP in the New WaveTM

architecture.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 26 / 73



Agent-0 The extensions

AGENT-0: the extensions

Two extensions of AGENT-0 have been proposed:

PLACA enriches AGENT-0 with a mechanism for flexible
management of plans.

Agent-K is an attempt to standardize the message passing
functionality in AGENT-0. It combines the syntax of AGENT-0
(without support for the planning mechanisms of PLACA) with the
format of KQML (Knowledge Query and Manipulation Language)
to ensure that messages written in languages different from
AGENT-0 can be handled.

[Thomas, S. R. The PLACA agent programming language. In ATAL’94]
[Davies, W. H. and Edwards, P. Agent-K: An integration of AOP &
KQML. Workshop on Intelligent Information Agents associated with
CIKM’94]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 27 / 73



Agent-0 The extensions

AGENT-0: the extensions

Two extensions of AGENT-0 have been proposed:

PLACA enriches AGENT-0 with a mechanism for flexible
management of plans.

Agent-K is an attempt to standardize the message passing
functionality in AGENT-0. It combines the syntax of AGENT-0
(without support for the planning mechanisms of PLACA) with the
format of KQML (Knowledge Query and Manipulation Language)
to ensure that messages written in languages different from
AGENT-0 can be handled.

[Thomas, S. R. The PLACA agent programming language. In ATAL’94]
[Davies, W. H. and Edwards, P. Agent-K: An integration of AOP &
KQML. Workshop on Intelligent Information Agents associated with
CIKM’94]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 27 / 73



Agent-0 The extensions

AGENT-0: the extensions

Two extensions of AGENT-0 have been proposed:

PLACA enriches AGENT-0 with a mechanism for flexible
management of plans.

Agent-K is an attempt to standardize the message passing
functionality in AGENT-0. It combines the syntax of AGENT-0
(without support for the planning mechanisms of PLACA) with the
format of KQML (Knowledge Query and Manipulation Language)
to ensure that messages written in languages different from
AGENT-0 can be handled.

[Thomas, S. R. The PLACA agent programming language. In ATAL’94]
[Davies, W. H. and Edwards, P. Agent-K: An integration of AOP &
KQML. Workshop on Intelligent Information Agents associated with
CIKM’94]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 27 / 73



Agent-0 The extensions

AGENT-0: the extensions

Two extensions of AGENT-0 have been proposed:

PLACA enriches AGENT-0 with a mechanism for flexible
management of plans.

Agent-K is an attempt to standardize the message passing
functionality in AGENT-0. It combines the syntax of AGENT-0
(without support for the planning mechanisms of PLACA) with the
format of KQML (Knowledge Query and Manipulation Language)
to ensure that messages written in languages different from
AGENT-0 can be handled.

[Thomas, S. R. The PLACA agent programming language. In ATAL’94]
[Davies, W. H. and Edwards, P. Agent-K: An integration of AOP &
KQML. Workshop on Intelligent Information Agents associated with
CIKM’94]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 27 / 73



Agent-0 The applications

AGENT-0: the applications

AGENT-0 is suitable for modeling agents and MAS.

We are not aware of documents showing the suitability of AGENT-0 or
its extensions for verifying MAS specifications or implementing real
agent systems.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 28 / 73



Agent-0 The applications

AGENT-0: the applications

AGENT-0 is suitable for modeling agents and MAS.

We are not aware of documents showing the suitability of AGENT-0 or
its extensions for verifying MAS specifications or implementing real
agent systems.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 28 / 73



AgentSpeak(L)

Outline

1 Computing with logic

2 Agents as Intentional Systems

3 Agent-0

4 AgentSpeak(L)
Jason: a Short Demo

5 Concurrent METATEM

6 IMPACT

7 Related work and conclusions

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 29 / 73



AgentSpeak(L)

AgentSpeak(L)

AgentSpeak(L) [A. S. Rao. AgentSpeak(L): BDI agents speak out
in a logical computable language, MAAMAW’96] takes as its
starting point the “procedural reasoning system” PRS and its
dMARS implementation.

AgentSpeak(L) is based on a restricted first-order language with
events and actions.

Beliefs, desires and intentions of the agent are not represented as
modal formulas, but they are ascribed to agents, in an implicit way,
at design time.

The current state of the agent can be viewed as its current belief
base; states that the agent wants to bring about can be viewed as
desires; and the adoption of programs to satisfy such stimuli can
be viewed as intentions.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 30 / 73



AgentSpeak(L)

AgentSpeak(L)

AgentSpeak(L) [A. S. Rao. AgentSpeak(L): BDI agents speak out
in a logical computable language, MAAMAW’96] takes as its
starting point the “procedural reasoning system” PRS and its
dMARS implementation.

AgentSpeak(L) is based on a restricted first-order language with
events and actions.

Beliefs, desires and intentions of the agent are not represented as
modal formulas, but they are ascribed to agents, in an implicit way,
at design time.

The current state of the agent can be viewed as its current belief
base; states that the agent wants to bring about can be viewed as
desires; and the adoption of programs to satisfy such stimuli can
be viewed as intentions.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 30 / 73



AgentSpeak(L)

AgentSpeak(L)

AgentSpeak(L) [A. S. Rao. AgentSpeak(L): BDI agents speak out
in a logical computable language, MAAMAW’96] takes as its
starting point the “procedural reasoning system” PRS and its
dMARS implementation.

AgentSpeak(L) is based on a restricted first-order language with
events and actions.

Beliefs, desires and intentions of the agent are not represented as
modal formulas, but they are ascribed to agents, in an implicit way,
at design time.

The current state of the agent can be viewed as its current belief
base; states that the agent wants to bring about can be viewed as
desires; and the adoption of programs to satisfy such stimuli can
be viewed as intentions.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 30 / 73



AgentSpeak(L)

AgentSpeak(L)

AgentSpeak(L) [A. S. Rao. AgentSpeak(L): BDI agents speak out
in a logical computable language, MAAMAW’96] takes as its
starting point the “procedural reasoning system” PRS and its
dMARS implementation.

AgentSpeak(L) is based on a restricted first-order language with
events and actions.

Beliefs, desires and intentions of the agent are not represented as
modal formulas, but they are ascribed to agents, in an implicit way,
at design time.

The current state of the agent can be viewed as its current belief
base; states that the agent wants to bring about can be viewed as
desires; and the adoption of programs to satisfy such stimuli can
be viewed as intentions.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 30 / 73



AgentSpeak(L) The fathers

AgentSpeak(L): the fathers

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 31 / 73



AgentSpeak(L) The logic behind

AgentSpeak(L): the logic behind it

Rao and Georgeff’s BDI logic.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 32 / 73



AgentSpeak(L) The syntax

AgentSpeak(L): the syntax

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 33 / 73



AgentSpeak(L) The syntax

AgentSpeak(L): the syntax

Initial beliefs

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 34 / 73



AgentSpeak(L) The syntax

AgentSpeak(L): the syntax

Plans

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 35 / 73



AgentSpeak(L) The syntax

AgentSpeak(L): the syntax

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 36 / 73



AgentSpeak(L) The syntax

AgentSpeak(L): the syntax

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 37 / 73



AgentSpeak(L) The syntax

AgentSpeak(L): the syntax

Triggering event

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 38 / 73



AgentSpeak(L) The syntax

AgentSpeak(L): the syntax

Intention (instantiated plan)

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 39 / 73



AgentSpeak(L) The semantics

AgentSpeak(L): the semantics

AgentSpeak(L) has a formal operational semantics and a proof theory
based on labeled transition systems.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 40 / 73



AgentSpeak(L) The interpreter

AgentSpeak(L): the interpreter

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 41 / 73



AgentSpeak(L) The implementations

AgentSpeak(L): the implementations

Prototypical interpreters for BDI-like languages and for AgentSpeak(L)
in particular have been developed in the past.

The Jadex reasoning engine follows the BDI model and facilitates easy
intelligent agent construction with sound software engineering
foundations.

It allows for programming intelligent software agents in XML and Java
and can be deployed on different kinds of middleware such as JADE.

Jadex is available open source at
http://jadex.informatik.uni-hamburg.de.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 42 / 73

http://jadex.informatik.uni-hamburg.de


AgentSpeak(L) The implementations

AgentSpeak(L): the implementations

A new interpreter and multi-agent platform for AgentSpeak(L) called
Jason has been recently developed.

The interpreter implements, in Java, the operational semantics of an
extended version of AgentSpeak(L).

Jason is available open source at
http://jason.sourceforge.net.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 43 / 73

http://jason.sourceforge.net


AgentSpeak(L) The extensions

AgentSpeak(L): the extensions

The community working on AgentSpeak(L) is, and has been in the
past, very active. Thus, many extensions to AgentSpeak(L) exist.

Cooperation through plan exchange [D. Ancona, V. Mascardi, J. Hübner and R.
Bordini. Coo-AgentSpeak: Cooperation in AgentSpeak through Plan Exchange.
AAMAS 2004].

Ontological reasoning [A. F. Moreira, R. Vieira, R. H. Bordini, and J. F. Hübner.
Agent-oriented programming with underlying ontological reasoning. DALT III.
2005]

Belief revision [N. Alechina, R. H. Bordini, J. F. Hübner, M. Jago, B. Logan. Belief
revision for AgentSpeak agents. AAMAS 2006]

Team formation [J. F. Hübner, R. H. Bordini. Developing a Team of Gold Miners
Using Jason. PROMAS 2007]

Semantic Web [T. Klapiscak, R. H. Bordini. JASDL: A Practical Programming
Approach Combining Agent and Semantic Web Technologies. DALT 2008]

...

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 44 / 73



AgentSpeak(L) The extensions

AgentSpeak(L): the extensions

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 45 / 73



AgentSpeak(L) The applications

AgentSpeak(L): the applications

Formal verification
In a series of papers, Bordini et al. have developed model-checking
techniques that apply directly to multi-agent programs written in
AgentSpeak(L).
The approach is to translate AgentSpeak(L) multi-agent systems into
either Promela or Java models, then using, respectively, SPIN or JPF
as model checkers.

[R. H. Bordini, M. Fisher, W. Visser, M. Wooldridge. Verifying
multi-agent programs by model checking. JAAMAS (2):239-256. 2006.]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 46 / 73



AgentSpeak(L) The applications

AgentSpeak(L): the applications

Formal verification
In a series of papers, Bordini et al. have developed model-checking
techniques that apply directly to multi-agent programs written in
AgentSpeak(L).
The approach is to translate AgentSpeak(L) multi-agent systems into
either Promela or Java models, then using, respectively, SPIN or JPF
as model checkers.

[R. H. Bordini, M. Fisher, W. Visser, M. Wooldridge. Verifying
multi-agent programs by model checking. JAAMAS (2):239-256. 2006.]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 46 / 73



AgentSpeak(L) The applications

AgentSpeak(L): the applications

Implementation of “real” agent systems

No “witnessed” applications.

The Jason implementation of AgentSpeak(L) raised the interest of
companies in France, the US, and Germany: Jason’s developers
received technical questions from people working there. Difficult to
know if these companies actually made a choice to use Jason in the
end.

In the past various systems have been developed using ad hoc
implementations of PRS or reactive planning systems more generally:
air traffic control, control of an oil processing plant, ...

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 47 / 73



AgentSpeak(L) The applications

AgentSpeak(L): the applications

Implementation of “real” agent systems

No “witnessed” applications.

The Jason implementation of AgentSpeak(L) raised the interest of
companies in France, the US, and Germany: Jason’s developers
received technical questions from people working there. Difficult to
know if these companies actually made a choice to use Jason in the
end.

In the past various systems have been developed using ad hoc
implementations of PRS or reactive planning systems more generally:
air traffic control, control of an oil processing plant, ...

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 47 / 73



AgentSpeak(L) The applications

AgentSpeak(L): the applications

Implementation of “real” agent systems

No “witnessed” applications.

The Jason implementation of AgentSpeak(L) raised the interest of
companies in France, the US, and Germany: Jason’s developers
received technical questions from people working there. Difficult to
know if these companies actually made a choice to use Jason in the
end.

In the past various systems have been developed using ad hoc
implementations of PRS or reactive planning systems more generally:
air traffic control, control of an oil processing plant, ...

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 47 / 73



AgentSpeak(L) The applications

AgentSpeak(L): the applications

Implementation of “real” agent systems

No “witnessed” applications.

The Jason implementation of AgentSpeak(L) raised the interest of
companies in France, the US, and Germany: Jason’s developers
received technical questions from people working there. Difficult to
know if these companies actually made a choice to use Jason in the
end.

In the past various systems have been developed using ad hoc
implementations of PRS or reactive planning systems more generally:
air traffic control, control of an oil processing plant, ...

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 47 / 73



AgentSpeak(L) Jason: a Short Demo

Jason: a Short Demo

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 48 / 73



Concurrent METATEM

Outline

1 Computing with logic

2 Agents as Intentional Systems

3 Agent-0

4 AgentSpeak(L)
Jason: a Short Demo

5 Concurrent METATEM

6 IMPACT

7 Related work and conclusions

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 49 / 73



Concurrent METATEM

Concurrent METATEM

M. Fisher and H. Barringer. Concurrent METATEM Processes – A
Language for Distributed AI, in Proc. of the European Simulation
Multiconference, 1991
Concurrent METATEM is a language based upon the direct execution
of temporal formulae.
It consists of two distinct aspects:

1 an execution mechanism for temporal formulae in a particular
form; and

2 an operational model that treats single executable temporal logic
programs as asynchronously executing agents in a concurrent
agent-based system.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 50 / 73



Concurrent METATEM The father

Concurrent METATEM: the father

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 51 / 73



Concurrent METATEM The logic behind

Concurrent METATEM: the logic behind it

FML is a first-order temporal logic based on discrete, linear models
with finite past and infinite future.

FML introduces two new connectives to classical logic, until (U) and
since (S), together with other operators definable in terms of U and S.

The intuitive meaning of a temporal logic formula
ϕ Uψ

is that ψ will become true at some future time point t and that in all
states between and different from now and t , ϕ will be true. S is the
analogous of U in the past.

[Fisher, M. A normal form for first-order temporal formulae. CADE’92]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 52 / 73



Concurrent METATEM The logic behind

Concurrent METATEM: the logic behind it

FML is a first-order temporal logic based on discrete, linear models
with finite past and infinite future.

FML introduces two new connectives to classical logic, until (U) and
since (S), together with other operators definable in terms of U and S.

The intuitive meaning of a temporal logic formula
ϕ Uψ

is that ψ will become true at some future time point t and that in all
states between and different from now and t , ϕ will be true. S is the
analogous of U in the past.

[Fisher, M. A normal form for first-order temporal formulae. CADE’92]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 52 / 73



Concurrent METATEM The logic behind

Concurrent METATEM: the logic behind it

FML is a first-order temporal logic based on discrete, linear models
with finite past and infinite future.

FML introduces two new connectives to classical logic, until (U) and
since (S), together with other operators definable in terms of U and S.

The intuitive meaning of a temporal logic formula
ϕ Uψ

is that ψ will become true at some future time point t and that in all
states between and different from now and t , ϕ will be true. S is the
analogous of U in the past.

[Fisher, M. A normal form for first-order temporal formulae. CADE’92]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 52 / 73



Concurrent METATEM The logic behind

Concurrent METATEM: the logic behind it

FML is a first-order temporal logic based on discrete, linear models
with finite past and infinite future.

FML introduces two new connectives to classical logic, until (U) and
since (S), together with other operators definable in terms of U and S.

The intuitive meaning of a temporal logic formula
ϕ Uψ

is that ψ will become true at some future time point t and that in all
states between and different from now and t , ϕ will be true. S is the
analogous of U in the past.

[Fisher, M. A normal form for first-order temporal formulae. CADE’92]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 52 / 73



Concurrent METATEM The syntax

Concurrent METATEM: the syntax

ψ Uφ : ψ will be true until φ will become true primitive
ψ Sφ : ψ was true until φ became true primitive
©φ : φ is true in the next state [false Uφ]
}φ : there was a last state and φ was true in it [false Sφ]
©• φ : if there was a last state, φ was true in it [¬} ¬φ]
♦φ : φ will be true in some future state [true Uφ]
♦• φ : φ was true in some past state [true Sφ]
2φ : φ will be true in all future states [¬ ♦¬φ]
�φ : φ was true in all past states [¬♦• ¬φ]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 53 / 73



Concurrent METATEM The semantics

Concurrent METATEM: the semantics

METATEM semantics is the one defined for FML.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 54 / 73



Concurrent METATEM The interpreter

Concurrent METATEM: the interpreter

The computational engine of an object is based on the METATEM
paradigm of executable temporal logics.

The idea behind this approach is to directly execute a declarative
agent specification given as a set of program rules which are temporal
logic formulae of the form:

antecedent about past⇒ consequent about future

The past-time antecedent is a temporal logic formula referring strictly
to the past, whereas the future time consequent is a temporal logic
formula referring either to the present or future. The intuitive
interpretation of such a rule is “on the basis of the past, do the future”.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 55 / 73



Concurrent METATEM The interpreter

Concurrent METATEM: the interpreter

The computational engine of an object is based on the METATEM
paradigm of executable temporal logics.

The idea behind this approach is to directly execute a declarative
agent specification given as a set of program rules which are temporal
logic formulae of the form:

antecedent about past⇒ consequent about future

The past-time antecedent is a temporal logic formula referring strictly
to the past, whereas the future time consequent is a temporal logic
formula referring either to the present or future. The intuitive
interpretation of such a rule is “on the basis of the past, do the future”.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 55 / 73



Concurrent METATEM The interpreter

Concurrent METATEM: the interpreter

The computational engine of an object is based on the METATEM
paradigm of executable temporal logics.

The idea behind this approach is to directly execute a declarative
agent specification given as a set of program rules which are temporal
logic formulae of the form:

antecedent about past⇒ consequent about future

The past-time antecedent is a temporal logic formula referring strictly
to the past, whereas the future time consequent is a temporal logic
formula referring either to the present or future. The intuitive
interpretation of such a rule is “on the basis of the past, do the future”.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 55 / 73



Concurrent METATEM The implementations

Concurrent METATEM: the implementations

Two implementations of the imperative future paradigm upon which
Concurrent METATEM is based exist.

1 The first is a prototype interpreter for propositional METATEM
implemented in the Scheme language [M. Fisher. Implementing a
prototype METATEM interpreter. Tech. rep., Department of
Computer Science, University of Manchester. 1990].

2 A more robust Prolog-based interpreter for a restricted first-order
version of METATEM has been used as a transaction
programming language for temporal databases [M. Finger, M.
Fisher, R. Owens. METATEM at work: Modelling reactive systems
using executable temporal logic. IEA/AIE’93].

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 56 / 73



Concurrent METATEM The implementations

Concurrent METATEM: the implementations

Two implementations of the imperative future paradigm upon which
Concurrent METATEM is based exist.

1 The first is a prototype interpreter for propositional METATEM
implemented in the Scheme language [M. Fisher. Implementing a
prototype METATEM interpreter. Tech. rep., Department of
Computer Science, University of Manchester. 1990].

2 A more robust Prolog-based interpreter for a restricted first-order
version of METATEM has been used as a transaction
programming language for temporal databases [M. Finger, M.
Fisher, R. Owens. METATEM at work: Modelling reactive systems
using executable temporal logic. IEA/AIE’93].

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 56 / 73



Concurrent METATEM The extensions

Concurrent METATEM: the extensions

Single Concurrent METATEM agents have been extended with deliberation and
beliefs [M. Fisher. Implementing BDI-like systems by direct execution. IJCAI’97]
and with resource-bounded reasoning [M. Fisher, C. Ghidini. Programming
resource-bounded deliberative agents. IJCAI’99].

Compilation techniques for MASs specified in Concurrent METATEM are
analyzed in [A. Kellet and M. Fisher. Automata representations for concurrent
METATEM. TIME’97].

Concurrent METATEM has been proposed as a coordination language in [A.
Kellet and M. Fisher. Concurrent METATEM as a coordination language.
COORDINATION’97].

The definition of groups of agents in Concurrent METATEM is discussed in [M.
Fisher. Representing abstract agent architectures. ATAL’98; M. Fisher and T.
Kakoudakis. Flexible agent grouping in executable temporal logic. ISPLIP’99]

Confidence is added to both single and multiple agents in [M Fisher and C.
Ghidini. The ABC of rational agent programming. AAMAS’02].

The development of teams of agents is discussed in [B. Hirsch, M. Fisher, C.
Ghidini. Organising logic-based agents. FAABS II, 2002].

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 57 / 73



Concurrent METATEM The applications

Concurrent METATEM: the applications

In [M. Fisher. A survey of Concurrent METATEM – the language and its
applications. ICTL’94] a range of sample applications of Concurrent
METATEM utilizing both the core features of the language and some of
its extensions are discussed.
They include bidding, problem solving, process control, fault tolerance.

Concurrent METATEM has the potential of specifying and verifying
applications in all of the areas above [M. Fisher, M. Wooldridge. On
the formal specification and verification of multi-agent systems.
International Journal of Cooperative Information Systems, 1997], but
we are not aware of the development of real systems using
Concurrent METATEM.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 58 / 73



Concurrent METATEM The applications

Concurrent METATEM: the applications

In [M. Fisher. A survey of Concurrent METATEM – the language and its
applications. ICTL’94] a range of sample applications of Concurrent
METATEM utilizing both the core features of the language and some of
its extensions are discussed.
They include bidding, problem solving, process control, fault tolerance.

Concurrent METATEM has the potential of specifying and verifying
applications in all of the areas above [M. Fisher, M. Wooldridge. On
the formal specification and verification of multi-agent systems.
International Journal of Cooperative Information Systems, 1997], but
we are not aware of the development of real systems using
Concurrent METATEM.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 58 / 73



IMPACT

Outline

1 Computing with logic

2 Agents as Intentional Systems

3 Agent-0

4 AgentSpeak(L)
Jason: a Short Demo

5 Concurrent METATEM

6 IMPACT

7 Related work and conclusions

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 59 / 73



IMPACT

IMPACT

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 60 / 73



IMPACT The father

IMPACT: the father

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 61 / 73



IMPACT The logic behind

IMPACT: the logic behind it

Deontic logic is the logic to reason about ideal and actual behavior.

From the 1950s, von Wright, Castañeda, Alchourrón and Bulygin and
others developed deontic logic as a modal logic with operators for
permission, obligation and prohibition.

Deontic logic has traditionally been used to analyze the structure of
normative law and normative reasoning in law.

[G. H. von Wright. Deontic logic. Mind 60, 1951]
[C. E. Alchourrón, E. Bulygin, Normative Systems. 1971.]
[N.-N. Castañeda. Thinking and Doing. The Philosophical Foundations
of Institutions. 1975.]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 62 / 73



IMPACT The logic behind

IMPACT: the logic behind it

Deontic logic is the logic to reason about ideal and actual behavior.

From the 1950s, von Wright, Castañeda, Alchourrón and Bulygin and
others developed deontic logic as a modal logic with operators for
permission, obligation and prohibition.

Deontic logic has traditionally been used to analyze the structure of
normative law and normative reasoning in law.

[G. H. von Wright. Deontic logic. Mind 60, 1951]
[C. E. Alchourrón, E. Bulygin, Normative Systems. 1971.]
[N.-N. Castañeda. Thinking and Doing. The Philosophical Foundations
of Institutions. 1975.]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 62 / 73



IMPACT The logic behind

IMPACT: the logic behind it

Deontic logic is the logic to reason about ideal and actual behavior.

From the 1950s, von Wright, Castañeda, Alchourrón and Bulygin and
others developed deontic logic as a modal logic with operators for
permission, obligation and prohibition.

Deontic logic has traditionally been used to analyze the structure of
normative law and normative reasoning in law.

[G. H. von Wright. Deontic logic. Mind 60, 1951]
[C. E. Alchourrón, E. Bulygin, Normative Systems. 1971.]
[N.-N. Castañeda. Thinking and Doing. The Philosophical Foundations
of Institutions. 1975.]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 62 / 73



IMPACT The logic behind

IMPACT: the logic behind it

Deontic logic is the logic to reason about ideal and actual behavior.

From the 1950s, von Wright, Castañeda, Alchourrón and Bulygin and
others developed deontic logic as a modal logic with operators for
permission, obligation and prohibition.

Deontic logic has traditionally been used to analyze the structure of
normative law and normative reasoning in law.

[G. H. von Wright. Deontic logic. Mind 60, 1951]
[C. E. Alchourrón, E. Bulygin, Normative Systems. 1971.]
[N.-N. Castañeda. Thinking and Doing. The Philosophical Foundations
of Institutions. 1975.]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 62 / 73



IMPACT The syntax

IMPACT: the syntax

Very complex since it includes “code calls” towards external pieces of
software and integrity constraints.

The basic idea is that each agent has a set of rules specifying the
principles under which the agent is operating. These rules specify,
using deontic modalities, what the agent may do, must do, may not do,
etc. and may include conditions over “code calls”.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 63 / 73



IMPACT The syntax

IMPACT: the syntax

Very complex since it includes “code calls” towards external pieces of
software and integrity constraints.

The basic idea is that each agent has a set of rules specifying the
principles under which the agent is operating. These rules specify,
using deontic modalities, what the agent may do, must do, may not do,
etc. and may include conditions over “code calls”.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 63 / 73



IMPACT The semantics

IMPACT: the semantics

If an agent’s behavior is defined by a program P, the question that the
agent must answer, over and over again is:

What is the set of all action status atoms of the form Doα(~t)
that are true with respect to P, the current state O and the set
IC of underlying integrity constraints on agent states?

This set defines the actions the agent must take; [T. Eiter, V.S.
Subrahmanian, G. Pick. Heterogeneous active agents, I: Semantics.
Artificial Intelligence. 1999] provides a series of successively more
refined semantics for action programs that answer this question.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 64 / 73



IMPACT The semantics

IMPACT: the semantics

If an agent’s behavior is defined by a program P, the question that the
agent must answer, over and over again is:

What is the set of all action status atoms of the form Doα(~t)
that are true with respect to P, the current state O and the set
IC of underlying integrity constraints on agent states?

This set defines the actions the agent must take; [T. Eiter, V.S.
Subrahmanian, G. Pick. Heterogeneous active agents, I: Semantics.
Artificial Intelligence. 1999] provides a series of successively more
refined semantics for action programs that answer this question.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 64 / 73



IMPACT The implementations

IMPACT: the implementations

The implementation of the IMPACT agent program consists of two
major parts, both implemented in Java:

1 the IMPACT Agent Development Environment (IADE) which is
used by the developer to build and compile agents, and

2 the run-time part that allows the agent to autonomously update its
reasonable status set and execute actions as its state changes.

The IADE provides a network accessible interface through which an
agent developer can specify the data types, functions, actions, integrity
constraints, notion of concurrency and agent program associated with
her/his agent; it also provides support for compilation and testing.

The runtime execution module runs as a background applet and
performs the following steps: (i) monitoring of the agent’s message
box, (ii) execution of the algorithm for updating the reasonable status
set and (iii) execution of the actions α such that Doα is in the updated
reasonable status set.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 65 / 73



IMPACT The implementations

IMPACT: the implementations

The implementation of the IMPACT agent program consists of two
major parts, both implemented in Java:

1 the IMPACT Agent Development Environment (IADE) which is
used by the developer to build and compile agents, and

2 the run-time part that allows the agent to autonomously update its
reasonable status set and execute actions as its state changes.

The IADE provides a network accessible interface through which an
agent developer can specify the data types, functions, actions, integrity
constraints, notion of concurrency and agent program associated with
her/his agent; it also provides support for compilation and testing.

The runtime execution module runs as a background applet and
performs the following steps: (i) monitoring of the agent’s message
box, (ii) execution of the algorithm for updating the reasonable status
set and (iii) execution of the actions α such that Doα is in the updated
reasonable status set.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 65 / 73



IMPACT The implementations

IMPACT: the implementations

The implementation of the IMPACT agent program consists of two
major parts, both implemented in Java:

1 the IMPACT Agent Development Environment (IADE) which is
used by the developer to build and compile agents, and

2 the run-time part that allows the agent to autonomously update its
reasonable status set and execute actions as its state changes.

The IADE provides a network accessible interface through which an
agent developer can specify the data types, functions, actions, integrity
constraints, notion of concurrency and agent program associated with
her/his agent; it also provides support for compilation and testing.

The runtime execution module runs as a background applet and
performs the following steps: (i) monitoring of the agent’s message
box, (ii) execution of the algorithm for updating the reasonable status
set and (iii) execution of the actions α such that Doα is in the updated
reasonable status set.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 65 / 73



IMPACT The extensions

IMPACT: the extensions

Many extensions to the IMPACT framework are discussed in the book [V.S.
Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Özcan, R. Ross. Heterogenous
Active Agents. 2000] which analyses:

meta agent programs to reason about other agents based on the beliefs they
hold;

temporal agent programs to specify temporal aspects of actions and states;

probabilistic agent programs to deal with uncertainty; and

secure agent programs to provide agents with security mechanisms.

Agents able to recover from an integrity constraints violation and able to continue to
process some requests while continuing to recover are discussed in [T, Eiter, V.
Mascardi, V. S. Subrahmanian. Error-Tolerant Agents. Computational Logic: Logic
Programming and Beyond. 2002].

The integration of planning algorithms in the IMPACT framework is discussed in [J.
Dix, H. Munoz-Avila, D. Nau. IMPACTing SHOP: Putting an AI planner into a
Multi-Agent Environment. Annals of Mathematics and AI. 2003].

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 66 / 73



IMPACT The extensions

IMPACT: the extensions

Many extensions to the IMPACT framework are discussed in the book [V.S.
Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Özcan, R. Ross. Heterogenous
Active Agents. 2000] which analyses:

meta agent programs to reason about other agents based on the beliefs they
hold;

temporal agent programs to specify temporal aspects of actions and states;

probabilistic agent programs to deal with uncertainty; and

secure agent programs to provide agents with security mechanisms.

Agents able to recover from an integrity constraints violation and able to continue to
process some requests while continuing to recover are discussed in [T, Eiter, V.
Mascardi, V. S. Subrahmanian. Error-Tolerant Agents. Computational Logic: Logic
Programming and Beyond. 2002].

The integration of planning algorithms in the IMPACT framework is discussed in [J.
Dix, H. Munoz-Avila, D. Nau. IMPACTing SHOP: Putting an AI planner into a
Multi-Agent Environment. Annals of Mathematics and AI. 2003].

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 66 / 73



IMPACT The extensions

IMPACT: the extensions

Many extensions to the IMPACT framework are discussed in the book [V.S.
Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Özcan, R. Ross. Heterogenous
Active Agents. 2000] which analyses:

meta agent programs to reason about other agents based on the beliefs they
hold;

temporal agent programs to specify temporal aspects of actions and states;

probabilistic agent programs to deal with uncertainty; and

secure agent programs to provide agents with security mechanisms.

Agents able to recover from an integrity constraints violation and able to continue to
process some requests while continuing to recover are discussed in [T, Eiter, V.
Mascardi, V. S. Subrahmanian. Error-Tolerant Agents. Computational Logic: Logic
Programming and Beyond. 2002].

The integration of planning algorithms in the IMPACT framework is discussed in [J.
Dix, H. Munoz-Avila, D. Nau. IMPACTing SHOP: Putting an AI planner into a
Multi-Agent Environment. Annals of Mathematics and AI. 2003].

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 66 / 73



IMPACT The applications

IMPACT: the applications

IMPACT’s main purpose is to allow the integration of heterogeneous
information sources and software packages.

It has been used to develop real applications, mainly in collaboration
with the US Military Academy, ranging from combat information
management where IMPACT was used to provide yellow pages
matchmaking services to aerospace applications where IMPACT
technology has led to the development of a multiagent solution to the
“controlled flight into terrain” problem.

The IADE environment provides support for monitoring the MAS
evolution.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 67 / 73



IMPACT The applications

IMPACT: the applications

IMPACT’s main purpose is to allow the integration of heterogeneous
information sources and software packages.

It has been used to develop real applications, mainly in collaboration
with the US Military Academy, ranging from combat information
management where IMPACT was used to provide yellow pages
matchmaking services to aerospace applications where IMPACT
technology has led to the development of a multiagent solution to the
“controlled flight into terrain” problem.

The IADE environment provides support for monitoring the MAS
evolution.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 67 / 73



IMPACT The applications

IMPACT: the applications

IMPACT’s main purpose is to allow the integration of heterogeneous
information sources and software packages.

It has been used to develop real applications, mainly in collaboration
with the US Military Academy, ranging from combat information
management where IMPACT was used to provide yellow pages
matchmaking services to aerospace applications where IMPACT
technology has led to the development of a multiagent solution to the
“controlled flight into terrain” problem.

The IADE environment provides support for monitoring the MAS
evolution.

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 67 / 73



Related work and conclusions

Related work

Other well-known and relevant agent programming languages based
on computational logic exist:

The one originally named DyLog [M. Baldoni, L. Giordano, A.
Martelli, V. Patti. Modeling agents in a logic action language.
Workshop on Practical Reasoning Agents, associated with
FAPR’00. 2000].

DALI [S. Costantini, A. Tocchio. The DALI Logic Programming
Agent-Oriented Language. JELIA 2004]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 68 / 73



Related work and conclusions

Related work

Other well-known and relevant agent programming languages based
on computational logic exist:

The one originally named DyLog [M. Baldoni, L. Giordano, A.
Martelli, V. Patti. Modeling agents in a logic action language.
Workshop on Practical Reasoning Agents, associated with
FAPR’00. 2000].

DALI [S. Costantini, A. Tocchio. The DALI Logic Programming
Agent-Oriented Language. JELIA 2004]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 68 / 73



Related work and conclusions

Related work

Other well-known and relevant agent programming languages based
on computational logic exist:

The one originally named DyLog [M. Baldoni, L. Giordano, A.
Martelli, V. Patti. Modeling agents in a logic action language.
Workshop on Practical Reasoning Agents, associated with
FAPR’00. 2000].

DALI [S. Costantini, A. Tocchio. The DALI Logic Programming
Agent-Oriented Language. JELIA 2004]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 68 / 73



Related work and conclusions

Related work

The languages defined as a part of the SOCS European Project
[http://lia.deis.unibo.it/research/socs]

Congolog [G. De Giacomo, Y. Lespérance, H. J. Levesque.
Congolog, a concurrent programming language based on the
situation calculus. Artificial Intelligence 121, 109–169. 2000].

3APL [K. Hindriks, F. De Boer, W. Van Der Hoek, J.-J. Meyer.
Formal semantics for an abstract agent programming language.
Intelligent Agents IV. 1998] and its related languages, Dribble [B.
Van Riemsdijk, W. Van Der Hoek, J.-J. Meyer. Agent programming
In Dribble: from beliefs to goals with plans. AAMAS 2003] and
Goal [K. Hindriks, F. De Boer, W. Van Der Hoek, J.-J. Meyer.
Agent programming with declarative goals. Intelligent Agents VII.
2001].

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 69 / 73

http://lia.deis.unibo.it/research/socs


Related work and conclusions

Related work

The languages defined as a part of the SOCS European Project
[http://lia.deis.unibo.it/research/socs]

Congolog [G. De Giacomo, Y. Lespérance, H. J. Levesque.
Congolog, a concurrent programming language based on the
situation calculus. Artificial Intelligence 121, 109–169. 2000].

3APL [K. Hindriks, F. De Boer, W. Van Der Hoek, J.-J. Meyer.
Formal semantics for an abstract agent programming language.
Intelligent Agents IV. 1998] and its related languages, Dribble [B.
Van Riemsdijk, W. Van Der Hoek, J.-J. Meyer. Agent programming
In Dribble: from beliefs to goals with plans. AAMAS 2003] and
Goal [K. Hindriks, F. De Boer, W. Van Der Hoek, J.-J. Meyer.
Agent programming with declarative goals. Intelligent Agents VII.
2001].

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 69 / 73

http://lia.deis.unibo.it/research/socs


Related work and conclusions

Related work

The languages defined as a part of the SOCS European Project
[http://lia.deis.unibo.it/research/socs]

Congolog [G. De Giacomo, Y. Lespérance, H. J. Levesque.
Congolog, a concurrent programming language based on the
situation calculus. Artificial Intelligence 121, 109–169. 2000].

3APL [K. Hindriks, F. De Boer, W. Van Der Hoek, J.-J. Meyer.
Formal semantics for an abstract agent programming language.
Intelligent Agents IV. 1998] and its related languages, Dribble [B.
Van Riemsdijk, W. Van Der Hoek, J.-J. Meyer. Agent programming
In Dribble: from beliefs to goals with plans. AAMAS 2003] and
Goal [K. Hindriks, F. De Boer, W. Van Der Hoek, J.-J. Meyer.
Agent programming with declarative goals. Intelligent Agents VII.
2001].

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 69 / 73

http://lia.deis.unibo.it/research/socs


Related work and conclusions

Conclusions

Some recent applications of agents and MASs based on
computational logic (or, at least, on declarative approaches) exist.

[G. S. Semmel, S. R. Davis, K. W. Leucht, D. A. Rowe, K. E. Smith, L.
Boloni. Space Shuttle Ground Processing with Monitoring Agents.
IEEE Intelligent Systems. 2006]
[Go4Flex http://jadex.informatik.uni-hamburg.de/bin/
view/Usages/Projects]
[V. Mascardi, D. Briola, M. Martelli, R. Caccia, C. Milani. Monitoring
and Diagnosing Railway Signalling with Logic-Based Distributed
Agents. CISIS 2008]

However...

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 70 / 73

http://jadex.informatik.uni-hamburg.de/bin/view/Usages/Projects
http://jadex.informatik.uni-hamburg.de/bin/view/Usages/Projects


Related work and conclusions

Conclusions

Some recent applications of agents and MASs based on
computational logic (or, at least, on declarative approaches) exist.

[G. S. Semmel, S. R. Davis, K. W. Leucht, D. A. Rowe, K. E. Smith, L.
Boloni. Space Shuttle Ground Processing with Monitoring Agents.
IEEE Intelligent Systems. 2006]
[Go4Flex http://jadex.informatik.uni-hamburg.de/bin/
view/Usages/Projects]
[V. Mascardi, D. Briola, M. Martelli, R. Caccia, C. Milani. Monitoring
and Diagnosing Railway Signalling with Logic-Based Distributed
Agents. CISIS 2008]

However...

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 70 / 73

http://jadex.informatik.uni-hamburg.de/bin/view/Usages/Projects
http://jadex.informatik.uni-hamburg.de/bin/view/Usages/Projects


Related work and conclusions

Conclusions

Some recent applications of agents and MASs based on
computational logic (or, at least, on declarative approaches) exist.

[G. S. Semmel, S. R. Davis, K. W. Leucht, D. A. Rowe, K. E. Smith, L.
Boloni. Space Shuttle Ground Processing with Monitoring Agents.
IEEE Intelligent Systems. 2006]
[Go4Flex http://jadex.informatik.uni-hamburg.de/bin/
view/Usages/Projects]
[V. Mascardi, D. Briola, M. Martelli, R. Caccia, C. Milani. Monitoring
and Diagnosing Railway Signalling with Logic-Based Distributed
Agents. CISIS 2008]

However...

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 70 / 73

http://jadex.informatik.uni-hamburg.de/bin/view/Usages/Projects
http://jadex.informatik.uni-hamburg.de/bin/view/Usages/Projects


Related work and conclusions

Conclusions

It is true that logical approaches to multi-agent systems are not widely
used in the market (yet). However, we witness a growing interest of the
stakeholders in technologies such as autonomic computing, service
oriented architectures, mobile robotics, and e-trade.

These are all domains very much related to the research being carried
out in the MAS community. As concerns increase over the reliability
and security of such systems and over the public’s trust in these
systems, so the use of logical approaches is likely to increase.

Moreover, domains such as Semantic Web services have a huge
market potential and enjoy extensive input from (specifically)
computational logic-based agent systems research.

[M. Fisher, R. H. Bordini, B. Hirsch, P. Torroni. Computational Logics
And Agents: A Road Map Of Current Technologies And Future Trends.
Computational Intelligence, 23(1). 2007]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 71 / 73



Related work and conclusions

Conclusions

It is true that logical approaches to multi-agent systems are not widely
used in the market (yet). However, we witness a growing interest of the
stakeholders in technologies such as autonomic computing, service
oriented architectures, mobile robotics, and e-trade.

These are all domains very much related to the research being carried
out in the MAS community. As concerns increase over the reliability
and security of such systems and over the public’s trust in these
systems, so the use of logical approaches is likely to increase.

Moreover, domains such as Semantic Web services have a huge
market potential and enjoy extensive input from (specifically)
computational logic-based agent systems research.

[M. Fisher, R. H. Bordini, B. Hirsch, P. Torroni. Computational Logics
And Agents: A Road Map Of Current Technologies And Future Trends.
Computational Intelligence, 23(1). 2007]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 71 / 73



Related work and conclusions

Conclusions

It is true that logical approaches to multi-agent systems are not widely
used in the market (yet). However, we witness a growing interest of the
stakeholders in technologies such as autonomic computing, service
oriented architectures, mobile robotics, and e-trade.

These are all domains very much related to the research being carried
out in the MAS community. As concerns increase over the reliability
and security of such systems and over the public’s trust in these
systems, so the use of logical approaches is likely to increase.

Moreover, domains such as Semantic Web services have a huge
market potential and enjoy extensive input from (specifically)
computational logic-based agent systems research.

[M. Fisher, R. H. Bordini, B. Hirsch, P. Torroni. Computational Logics
And Agents: A Road Map Of Current Technologies And Future Trends.
Computational Intelligence, 23(1). 2007]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 71 / 73



Related work and conclusions

Conclusions

It is true that logical approaches to multi-agent systems are not widely
used in the market (yet). However, we witness a growing interest of the
stakeholders in technologies such as autonomic computing, service
oriented architectures, mobile robotics, and e-trade.

These are all domains very much related to the research being carried
out in the MAS community. As concerns increase over the reliability
and security of such systems and over the public’s trust in these
systems, so the use of logical approaches is likely to increase.

Moreover, domains such as Semantic Web services have a huge
market potential and enjoy extensive input from (specifically)
computational logic-based agent systems research.

[M. Fisher, R. H. Bordini, B. Hirsch, P. Torroni. Computational Logics
And Agents: A Road Map Of Current Technologies And Future Trends.
Computational Intelligence, 23(1). 2007]

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 71 / 73



Related work and conclusions

Sources of information

The content of this presentation is mainly based on

[V. Mascardi, M. Martelli, L. Sterling. Logic-Based Specification
Languages for Intelligent Software Agents. Theory and Practice of
Logic Programming Journal (TPLP), 4(4), Cambridge University Press,
pagg. 429 – 494, 2004
http://www.disi.unige.it/person/MascardiV/Papers/
VivianaPublications.html]

Another source of information on agents and computational logic is [M.
Fisher, R. H. Bordini, B. Hirsch, P. Torroni. Computational Logics And
Agents: A Road Map Of Current Technologies And Future Trends.
Computational Intelligence, 23(1). 2007].

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 72 / 73

http://www.disi.unige.it/person/MascardiV/Papers/VivianaPublications.html
http://www.disi.unige.it/person/MascardiV/Papers/VivianaPublications.html


Related work and conclusions

Sources of information

The content of this presentation is mainly based on

[V. Mascardi, M. Martelli, L. Sterling. Logic-Based Specification
Languages for Intelligent Software Agents. Theory and Practice of
Logic Programming Journal (TPLP), 4(4), Cambridge University Press,
pagg. 429 – 494, 2004
http://www.disi.unige.it/person/MascardiV/Papers/
VivianaPublications.html]

Another source of information on agents and computational logic is [M.
Fisher, R. H. Bordini, B. Hirsch, P. Torroni. Computational Logics And
Agents: A Road Map Of Current Technologies And Future Trends.
Computational Intelligence, 23(1). 2007].

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 72 / 73

http://www.disi.unige.it/person/MascardiV/Papers/VivianaPublications.html
http://www.disi.unige.it/person/MascardiV/Papers/VivianaPublications.html


Related work and conclusions

...Questions?

V. Mascardi, University of Genoa, DISI Computational Logic and Agents @ WOA July, 8th, 2009 73 / 73


	Computing with logic
	Agents as Intentional Systems
	Agent-0
	
	
	
	
	
	
	
	

	AgentSpeak(L)
	
	
	
	
	
	
	
	
	Jason: a Short Demo

	Concurrent METATEM
	
	
	
	
	
	
	
	

	IMPACT
	
	
	
	
	
	
	

	Related work and conclusions

