
Incrementally Predictive Runtime Verification September 2021A. Ferrando and G. Delzanno

Incrementally Predictive
Runtime Verification

Angelo Ferrando and Giorgio Delzanno

University of Genova

angelo.ferrando@unige.it
Research Fellow

mailto:angelo.ferrando@unige.it

Incrementally Predictive Runtime Verification September 2021A. Ferrando and G. Delzanno

Formal Verification [in a nutshell]

In the context of hardware and software systems, formal verification is the act of proving or
disproving the correctness of intended algorithms underlying a system with respect to a
certain formal specification or property.

Application domains:
• Generally safety-critical systems: a system whose failure can cause death, injury, or big

financial losses
• Embedded systems: often safety-critical and reasonably small (thus amenable to formal

verification)

Incrementally Predictive Runtime Verification September 2021A. Ferrando and G. Delzanno

Runtime Verification

Complement of
• formal static verification (such as Model Checking)

pros: formal, exhaustive cons: suffers from scalability
• testing.

pros: scales well cons: not formal, not exhaustive

Dynamic checking of system behaviour using one (or multiple) Monitor(s)
pros: formal, scales well, can be done after deployment
cons: not exhaustive

Instrumentation

Monitor SystemProperty

Observe

Feedback

Verdict

φ

Incrementally Predictive Runtime Verification September 2021A. Ferrando and G. Delzanno

Issues concerning Runtime Verification

Overhead

• Even though monitors are lightweight components, they are still an additional workload for
the system. This is not a problem for large systems, but it might be for smaller ones, such
embedded systems; where the amount of available resources can be limited.

"Sorry, You crashed!"

• There might be scenarios where it is necessary to anticipate a violation (resp. satisfaction),
because to report it only when it happens could be too late.

For both increasing reliability and reducing the impact of the monitors on the system, an
extension of standard RV named Predictive Runtime Verification (PRV) has been proposed
in the past.

Incrementally Predictive Runtime Verification September 2021A. Ferrando and G. Delzanno

Predictive Runtime Verification

PRV differs from RV because it does not only consider the events observed by the
system execution, but it also tries to predict future events. By predicting future events, the
resulting monitors are capable of concluding the verification sooner.

The problem with PRV is that it requires additional knowledge on the system in order to
predict future events.

Usually, this is represented through an abstraction, the model, which is manually created by
an expert of the system.

Instrumentation

Predictive
Monitor SystemProperty

Observe

Feedback

Verdict

φ

Model

ψ

Incrementally Predictive Runtime Verification September 2021A. Ferrando and G. Delzanno

Issues concerning Predictive Runtime Verification

The problem with PRV is that a model of the system is not always available, and even
when it is, it might not be specified in a convenient way (e.g. wrong formalism).

One possible way to avoid errors due to human intervention in the model generation step is
to resort to observations collected at runtime.

The guiding principle here is to learn the model behaviour by observing real execution
traces so as to create a sort of closed loop in which

1. logs are used to adjust the candidate models,
2. models are used to predict faults with certain confidence level,
3. the confidence level increases with the log size,
4. go back to 1.

Specifically, we use Process Mining (PM) to automate the model generation phase in practical
applications of PRV.

Incrementally Predictive Runtime Verification September 2021A. Ferrando and G. Delzanno

Process Mining

Process Mining is a technique used in software engineering to automatically synthesise a
formal model which denotes the system behaviour. Such analysis is usually performed on event
logs generated by multiple executions of the system.

In practice, by using data mining algorithms, knowledge is extracted by these logs and
corresponding formal models are generated.

Since PM completely depends on the event logs generated by the system execution, more
logs are used, and more precise models are extracted. Because of this, PM does not
only allow PRV to be applied when a model of the system does not exist, but it
also makes PRV more robust and reliable.

Incrementally Predictive Runtime Verification September 2021A. Ferrando and G. Delzanno

Incrementally Predictive Runtime Verification (iPRV)

Incrementally Predictive Runtime Verification September 2021A. Ferrando and G. Delzanno

iPRV instantiation

Incrementally Predictive Runtime Verification September 2021A. Ferrando and G. Delzanno

Implementation

A Python implementation of our approach is publicly available as a GitHub repository:

https://github.com/AngeloFerrando/IncrementallyPredictiveRV

We implemented all the engineering steps presented in this paper, when instantiated to the
case with LTL properties and BA models.

More in detail, the resulting tool takes in input:
1. a set of log files (expressed as a single XES file), which is the standard format used in PM to

represent event logs;
2. a threshold to guide the mapping from PFSM to BA;
3. an LTL property to verify;
4. a trace generated by the current system execution to analyse.

https://github.com/AngeloFerrando/IncrementallyPredictiveRV

Incrementally Predictive Runtime Verification September 2021A. Ferrando and G. Delzanno

Conclusions and Future Work

Contribution
• A general verification workflow for integrating PM in the generation of predictive monitors.
• All the engineering steps that bring to the extraction of a model which can be used to predict

future events and speed up the RV process.
• A general approach where no formalism is enforced. Nonetheless, to help better

understanding the approach, we also show an instantiation with LTL properties and
BA models.

• A Python prototype tool.

Future Directions
• At the current level, the probability is not considered in the monitor and it is lost in the

translation from PFSM to BA. Nonetheless, this is an interesting aspect to explore further.
Indeed, the notion of threshold could be used to add more information to the monitor’s
outcome.

• This could also bring to the generation of multiple BA, each corresponding to a different
threshold.

Incrementally Predictive Runtime Verification September 2021A. Ferrando and G. Delzanno

Incrementally Predictive
Runtime Verification

Angelo Ferrando and Giorgio Delzanno

University of Genova

angelo.ferrando@unige.it
Research Fellow

Thanks for your attention!

mailto:angelo.ferrando@unige.it

