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Euclidean TSP

Euclidean Traveling Salesperson Problem (ETSP)

Traveling Salesperson Problem (TSP)
Euclidean TSP (ETSP)

Each node i to be visited is associated with a
point Pi = (xi , yi) in the Euclidean plane, and
the cost function w(Pi ,Pj) is the Euclidean
distance.

Flood (1956) [Flo56]
Let c∗ be an optimal tour of a Metric TSP.
Then, for each ei,j ,ek,l ∈ c∗ such that {i , j , k , l}
are all different, the segments PiPj ∩ Pk Pl = ∅.
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No-overlapping constraints

Avoiding crossings

The nocrossing constraint [BG20] imposes that a pair of segments in the TSP
should not cross each other (except, possibly, in one endpoint).
In the successor representation, it is defined as follows:

nocrossing(i ,Next i , j ,Next j) =
(

PiPNext i ∩ PjPNext j

)
⊂ {Pi ,Pj}

where i and j are ground variables.

This constraint should be imposed for each of the n(n−1)
2 pairs of nodes, i.e. a

quadratic number of constraints !
Some nocrossing constraints never perform any pruning, and only introduce

overhead
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Collecting data

Evaluating the performance of each nocrossing constraint
Indicators - for each nocrossing
constraint

Nactivations: number of activations of
the constraint
Npruned : number of value deletions
from the domain of the variables
involved
Number of failures (and therefore
backtracks) generated as a result of
the deletion of values.

Figure: Graphical representation of the Npruned
(green) and Number of failures (red)
indicators of each nocrossing constraint in a
Euclidean TSP instance. The darker the color
of the line, the higher the value.
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Collecting data

Evaluating the performance of each nocrossing constraint

RTIO =
Npruned

Nactivations

Low RTIO⇒ the constraint wakes up
many times without being able to
perform pruning (overhead)
High RTIO⇒ the constraint can
perform a much stronger pruning
compared to the number of
activations

Figure: Graphical representation of the RTIO of
each nocrossing constraint in a Euclidean
TSP instance. The darker the color of the line,
the higher the RTIO value.
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Collecting data

Evaluating the performance of each nocrossing constraint

A constraint belonging to a certain instance I is labeled as useful if its RTIO is
greater than the arithmetic mean calculated on the RTIO of all the constraints
belonging to instance I, otherwise it is labeled as useless.
The relation we wish to learn could be seen as a function mapping each pair of points
(in a generic Euclidean TSP instance) to the set of classes {useful ,useless}.
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Collecting data

Features

We have identified the following 15 features for each nocrossing(i ,Next i , j ,Next j)
constraint in the dataset:

XPIN, YPIN, XPJN, YPJN: normalized coordinates of the two points;
DISN: Euclidean distance calculated between points Pi and Pj ;
LEVI, LEVJ: a numeric value suggesting how deep in the interior of the figure are
points Pi and Pj ;
CXNI, CYNI, CXNJ, CYNJ: normalized coordinates of the nearest point to Pi and Pj
respectively;
NDTI, NDTJ: Euclidean distance of the closest point to Pi and Pj respectively;
NBHD: number of points contained in the circle having as diameter the segment
connecting points Pi and Pj ;

NMST: indicates whether the segment PiPj belongs to a MST.
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Machine Learning

Machine learning

The dataset of labelled constraints is suitable for the application of supervised
machine learning algorithms
We want to predict which of the constraints will be useful and which will be useless in
a new unseen instance of the Euclidean TSP.
Random Forest

Random Forest (RF) approach is known for its good computational performance and
scalability;
The algorithm used in the experimental validation is the one available in the WEKA1

workbench for machine learning.

1https://www.cs.waikato.ac.nz/ml/weka/
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Machine Learning

Machine learning

1 A training dataset of various Euclidean TSP instances, where each constraint has
been labelled according to its own RTIO, is used to learn a random forest classifier;

2 Given any new instance of the problem, for whose constraints the label are unknown,
apply the classifier to find the only pairs of points that are classified as useful for
imposing the nocrossing constraint;

3 Run the instance together with the selected nocrossing constraints to solve the
Euclidean TSP.
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Experiments

Experiments

Random Forest Classifier Dataset: 517,120 nocrossing constraints (from 1024
instances of Euclidean TSP). Split 66% training, 34% test.

Class TP Rate (Recall) FP Rate Precision F-Measure ROC Area PR Area
0 0.957 0.301 0.932 0.944 0.945 0.984
1 0.699 0.043 0.790 0.742 0.945 0.818

Euclidean TSP Solver Experiments on 1024 randomly-generated TSPs [JM07],
varying the size from 15 to 30 nodes. We compared three constraint models:

ECLP : a basic constraint model, including the circuit and alldifferent
constraints required by the successor representation plus the objective function;
ALL : the constraint model imposing the nocrossing constraint for all pairs of nodes;
RF : the model imposing only the nocrossing constraints predicted as useful by the
classifier.
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Experiments

Experiments
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All algorithms are
implemented in the
ECLiPSe CLP lan-
guage [SS12]. The
time limit for each run
was set to 3480s.
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Conclusion and Future work

Conclusion and Future work

Conclusion
We proposed to predict and select a subset of useful nocrossing constraints in
Euclidean Traveling Salesperson Problems (TSPs) formulated in Constraint
Programming (CP) by means of machine learning techniques.
Experimental results are encouraging, but we believe that much more efficiency could
be obtained in future research.

Future work
Testing other supervised learning techniques (e.g. neural networks).
Expanding the dataset of experiments (using different search strategies).
Enlarging the set of features collected during the creation of the dataset.
Use dynamic strategies (removing during search less effective constraints).
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Conclusion and Future work

For further information...

Bellodi E., Bertagnon A., Gavanelli M.,
Zese R. (2021) Improving the Efficiency
of Euclidean TSP Solving in Constraint
Programming by Predicting Effective
Nocrossing Constraints. In: Baldoni M.,
Bandini S. (eds) AIxIA 2020 - Advances in
Artificial Intelligence. AIxIA 2020. Lecture
Notes in Computer Science, vol 12414.
Springer.
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Thank you for your attention.
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Extended Features 1/3

We have identified the following 45 features for each nocrossing(i ,Next i , j ,Next j)
constraint in the dataset:

1 - 3: Cost Matrix Statistics*: Mean (cavg), variation coefficient, skew;
4 - 5: Distance: Euclidean distance dNi Nj between points Ni and Nj .
6: Radius*: Mean distance from each node to the centroid;
7 - 10: Centroid Distance: Euclidean distance from the centroid C to the two
extremes Ni (dCNi ) and Nj (dCNj ) respectively.
11 - 12: Levels: Level of points Pi and Pj .
13 - 15: Cluster Distance Features*: Mean, variation coefficient, skew;
16 - 17: Nearest Neighbour Distance*: Standard deviation and coefficient variation
of the normalized nearest neighbour distance;
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Extended Features 2/3

18 - 21: Neighbours Distance: Euclidean distance of the closest point C(Ni) to Ni
(dC(Ni )Ni

) and Nj (dC(Nj )Pj
) respectively;

22: Neighbourhood size: Number of points contained in the circle having as
diameter the segment connecting points Pi and Pj ;
23 - 26: Minimum spanning tree cost statistics*: Sum, mean, variation coefficient,
skew;
27 - 28: Shortest Path in MST: Cost of the shortest path p between Ni and Nj in a
minimum spanning tree;
29 - 31: Minimum spanning tree node degree statistics*: Mean, variation
coefficient, skew;
32 - 33: MST Degree: Degree in the minimum spanning tree of Pi and Pj
respectively;
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Extended Features 3/3

34: Segment in MST (boolean value) Indicates whether the segment PiPj belongs to
a minimum spanning tree.
35 - 36: Segment crosses: Number of segments crossing the segment PiPj and the
version normalized, obtained dividing by the total number of arcs;
37 - 40: Crossings: Total number of crossings between edges exiting from Pi (resp.
Pj ) and other edges.
41 - 45: Fraction of distinct distances*, with precision to k ∈ {1,2,3,4} decimal
digits.
46: Good: (boolean value) label each constraint as useful (1) or useless (0).
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Extended Experiments

Dataset of 434,352 nocrossing constraints - 50% labelled as useful and 50% as
useless - collected from 1536 instances of Euclidean TSP (split 66% training, 34% test).

Table: Performance of the RF and MLP classifiers over the fraction of instances used for test.
Class 0 corresponds to useless constraints.

Classifier Class Recall FP Rate Precision F-Measure ROC Area PR Area Accuracy

RF
0 0.760 0.155 0.830 0.793 0.883 0.894
1 0.845 0.240 0.779 0.811 0.883 0.862

W.Avg. 0.802 0.198 0.804 0.802 0.883 0.878 0.802

MLP
0 0.827 0.258 0.704 0.761 0.855 0.871
1 0.742 0.173 0.853 0.794 0.855 0.829

W.Avg. 0.785 0.215 0.779 0.777 0.855 0.850 0.779
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Extended Experiments
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time limit for each run
was set to 3480s.
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Experiments
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