A Mechanism for Reasoning over Defeasible Preferences in Arg2P

Giuseppe Pisano*Roberta Calegari°Andrea Omicini*Giovanni Sartor†

*°[†]Alma Mater Research Institute for Human-Centered Artificial Intelligence *Dipartimento di Informatica - Scienza e Ingegneria (DISI) Alma Mater Studiorum—Università di Bologna, Italy {g.pisano, roberta.calegari, andrea.omicini, giovanni.sartor}@unibo.it

CILC'21: 37th Italian Conference on Computational Logic 7-9 September 2021 - Parma, Italy

The CompuLaw project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 833647)

- 2 Background notions
- O PAFs in Arg2P
- GPAFs in Arg2P

Context & motivation I

Argumentation with Conditional Preferences

- preferences depending on the admissibility status of an argument
- $\rightarrow\,$ many real life scenarios assume the ability tu argue over preferences
- $\rightarrow\,$ we often express preferences depending on the situation
 - ? an efficient implementation of models for defeasible preferences is missing
- $\rightarrow\,$ we want to obtain the highest degree of compatibility with the standard approaches for standard and structured argumentation

Context & motivation II

Proposal

an efficient implementation for defeasible preferences in Arg2P [Pisano et al., 2020, Calegari et al., 2020]

 \rightarrow the work is based on Dung's model for conditional priorities $^{[\rm Dung\ et\ al.,\ 2019]}$

- provide an optimized implementation of the base model
- generalise the algorithm to handle arbitrary preference relations over arguments

Structured argumentation I

Defeasible rules

Rules that can be defeated by contrary evidence

 $\rightarrow\,$ used to represent defeasible knowledge, i.e., tentative information that may be used if nothing could be posed against it

Standard argumentation theory [Modgil and Prakken, 2014]

- defeasible theory consists of a set of rules
- arguments can be constructed by chaining rules from the theory
- argument A attacks an argument B iff A undercuts, rebuts or undermines B

Structured argumentation II

Definition (Argumentation Framework (AF))

An **argumentation graph** constructed from a defeasible theory T is a tuple $\langle A, \rightsquigarrow \rangle$, where A is the set of all arguments constructed from T, and \sim is the *attack* relation over A

Labelling semantics^[Dung, 1995, Baroni et al., 2011]

Each argument is associated with one label which is either IN, OUT, or UND meaning the argument is either accepted, rejected, or undecided

Pisano et al. (UniBo) A Meo

A Mechanism for Reasoning over Defeasi

CILC, 2021

Structured argumentation & Preferences I

Preference Arguments^[Dung et al., 2019]

An argument such that its conclusion has the form $N(r1) \prec N(r2)$ where r1 and r2 are defeasible rules.

Preference based Argumentaion Framework (PAF)[Dung et al., 2019]

PAFs are a *transformation* of a standard AF also accounting for preference arguments.

- transform AF attacks into arguments
 - \rightarrow conditional preferences attack these new arguments, thus challenging their effect
- rebuild the attacks set considering
 - attacks coming from attacks transformed into arguments
 - 2 attacks involving preference arguments

Structured argumentation & Preferences II

Structured argumentation & Preferences III

PAF conservativeness

PAF is a conservative generalisation of standard AFs

 $\rightarrow\,$ standard semantics can be applied to PAFs to determine arguments admissibility

Preference attack relation

the original work by [Dung et al., 2019] is focused on the relation used to identify the preference attacks

- $patt \subseteq A \times dbut_{\rightarrow}$ such that $(X, (A, B)) \in patt$ iff $\exists d \in LastDefRules(A)$ such that $d < TopRule(B) \in Conc(X)$
- $\rightarrow\,$ an attack is not valid iff exists a single preference against it

PAF in Arg2P I

Arg-tuProlog

- lightweight implementation of structured argumentation
- interoperability, portability, modularity, customisation
- $\rightarrow\,$ suitable for highly-distributed environments
 - \rightarrow query-mode evaluation

Optimizing the transformation

only attacks that are *impacted* by a preference argument are *transformed*

- $\rightarrow\,$ if there are no preference arguments the PAF is equal to the original AF
- \rightarrow no computational overhead (keep the graph size small)

PAF in Arg2P II

AF to PAF transormation

```
(PafArguments, PafAttacks) BuildPafArgumentationGraph(Arguments, Attacks):
  (ValidAttacks, InvalidAttacks) = filterSupRelatedAttacks(Attacks)
  (NewArguments, NewAttacks) = convertAttacks(InvalidAttacks)
  PrefAttacks = buildPrefAttacks(Arguments, NewArguments)
  PafArguments = append(Arguments, NewArguments)
  PafAttacks = append(ValidAttacks, NewAttacks, PrefAttacks)
```

```
return (PafArguments, PafAttacks)
```

- filter attacks that are in no circumstances impacted by preference arguments
- ② convert the preference-related attacks into arguments
- Solution by build the set of attacks coming from preference arguments
- In the new arguments and attacks sets

A simple example

Theory

- r0 : [] => a. r1 : a => b. r3 : [] => -a. r4 : [] => sup(r0, r3). r5 : [] => sup(r3, r0). r6 : [] => sup(r5, r4).
 - rules r0 and r1 concluding the two conflicting literals a and $\neg a$
 - I claims b if a is proved
 - In the second second

Going Further

Transformation Soundness

The transformation algorithm is sound w.r.t. the original model [Dung et al., 2019]

 $\rightarrow\,$ demonstration details in the paper

Should we stop here?

Our requirements demand to have the highest degree of compatibility with the standard approaches of standard and structured argumentation

 $\rightarrow\,$ What about the use of combined preferences?

The ASPIC+ framework deals also with arguments relations based on *multiple* preferences (e.g. *weak democrat principle*)

 \rightarrow We need to generalise standard PAF mechanisms

Generalising PAFs I

Grouped Preference Set & Joint preferences argument

Given a set of preference arguments \mathcal{A}_P in an argumentation framework, the set of all the possible subsets of \mathcal{A}_P (2^{\mathcal{A}_P}) is the **grouped preference** set

 $\rightarrow\,$ for every element of the grouped preference set we build an artificial argument called joint preferences argument.

From PAF to GPAF

() the arguments set also contains the joint preferences arguments

- Preference attacks are not issued by single arguments but by joint preferences arguments
 - $\rightarrow\,$ we can now have combination of rule preferences

Generalising PAFs II

AF to GPAF transormation

```
(PafArguments, PafAttacks) BuildPafArgumentationGraph(Arguments, Attacks):
   (ValidAttacks, InvalidAttacks) = filterSupRelatedAttacks(Attacks)
   (NewArguments, NewAttacks) = convertAttacks(InvalidAttacks)
   PrefAttacks = buildPrefAttacks(Arguments, NewArguments)
   PafArguments = append(Arguments. NewArguments)
```

```
PafAttacks = append(ValidAttacks, NewAttacks, PrefAttacks)
return (PafArguments, PafAttacks)
```

- filter attacks that are in no circumstances impacted by joint preferences arguments
- ② convert the preference-related attacks into arguments
- build the set of attacks coming from joint preferences arguments
- In the new arguments and attacks sets

Generalising PAFs III

A simple example

Theory r0 : [] => a. r1 : a => b. r2 : [] => -b. r3 : [] => sup(r2, r1). r4 : [] => sup(r2, r0).

- **(**) rules r1 and r2 concluding the two conflicting literals b and $\neg b$
- 2 r1 claims b if a is proved
- In 14, r5 and r6 claim preferences over those rules
- we apply the weakest-link democratic ordering

Future work

The work needs further analysis w.r.t. the themes of:

- computational complexity
 - *polynomial* w.r.t. the number of input attacks for both the algorithms
 - $\rightarrow O(2N * PA)$ where N is the number of the input attacks and PA is the number of preference arguments
 - ! but a formal analysis is still missing
- termination
 - transformed graph should be *always* be obtainable by the proposed algorithms
 - soundness of solutions provided by the transformed argumentation graph must be proved

Also a formal foundation for the GPAF model needs to be provided

A Mechanism for Reasoning over Defeasible Preferences in Arg2P

Giuseppe Pisano*Roberta Calegari°Andrea Omicini*Giovanni Sartor†

*°[†]Alma Mater Research Institute for Human-Centered Artificial Intelligence *Dipartimento di Informatica - Scienza e Ingegneria (DISI) Alma Mater Studiorum—Università di Bologna, Italy {g.pisano, roberta.calegari, andrea.omicini, giovanni.sartor}@unibo.it

CILC'21: 37th Italian Conference on Computational Logic 7-9 September 2021 - Parma, Italy

The CompuLaw project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 833647)

References I

[Baroni et al., 2011] Baroni, P., Caminada, M., and Giacomin, M. (2011). An introduction to argumentation semantics. *The Knowledge Engineering Review*, 26(4):365–410.

[Calegari et al., 2020] Calegari, R., Contissa, G., Pisano, G., Sartor, G., and Sartor, G. (2020). Arg-tuProlog: a modular logic argumentation tool for PIL. In Villata, S., Harašta, J., and Křemen, P., editors, *Legal Knowledge and Information* Systems. JURIX 2020: The Thirty-third Annual Conference, volume 334 of Frontiers in Artificial Intelligence and Applications, pages 265–268.

[Dung, 1995] Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. *Artificial Intelligence*, 77(2):321–358.

[Dung et al., 2019] Dung, P. M., Thang, P. M., and Son, T. C. (2019).
On structured argumentation with conditional preferences.
In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, pages 2792–2800. AAAI Press.

References II

[Modgil and Prakken, 2014] Modgil, S. and Prakken, H. (2014). The ASPIC⁺ framework for structured argumentation: a tutorial. Argument Computation, 5(1):31–62.

[Pisano et al., 2020] Pisano, G., Calegari, R., Omicini, A., and Sartor, G. (2020).
 Arg-tuprolog: a tuprolog-based argumentation framework.
 In Proceedings of the 35th Italian Conference on Computational Logic - CILC 2020, volume 2710 of CEUR Workshop Proceedings, pages 51–66. CEUR-WS.org.