
I-DLV-sr: a Stream Reasoning System based on I-DLV

Francesco Calimeri Marco Manna Elena Mastria Maria Concetta Morelli

Simona Perri Jessica Zangari

Department of Mathematics and Computer Science, University of Calabria, Italy

36th Italian Conference on Computational Logic

Motivations and Contributions

Data Stream Result Stream

B
a

ck
g

ro
u

n
d

K
n

o
w

le
d

g
e

Stream Reasoning (SR)

Continuous application of inference techniques on highly dynamic data streams

• IoT, Smart Cities, Emergency Management...

• Sources (devices, sensors, etc) produce high volume of data at each moment

• Goals: insight, knowledge, support to decision-making process etc.

• A Stream Reasoner performs complex deduction tasks

• Use some Background Knowledge of the domain

• Use window-based processing to deal with infinite data streams

• exploits the temporal order of the events in the streams
• applies window-based evaluations:

• deal with (potentially) infinite stream (→snapshot)

• perform complex deduction tasks

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 1 / 15

Motivations and Contributions

Answer Set Programming (ASP):

• Declarative paradigm for Knowledge Representation and Reasoning

• Successfully employed in both academy and industry

• Robust and efficient implementations

• A particularly attractive basis for SR

Goal: obtain a novel and reliable ASP-based stream reasoner, that:

• Inherits the highly declarative nature and ease of use from ASP;

• Can be easily extended with new constructs relevant for practical SR

scenarios;

• Efficiently scales over real-world application domains.

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 2 / 15

Motivations and Contributions

Answer Set Programming (ASP):

• Declarative paradigm for Knowledge Representation and Reasoning

• Successfully employed in both academy and industry

• Robust and efficient implementations

• A particularly attractive basis for SR

Goal: obtain a novel and reliable ASP-based stream reasoner, that:

• Inherits the highly declarative nature and ease of use from ASP;

• Can be easily extended with new constructs relevant for practical SR

scenarios;

• Efficiently scales over real-world application domains.

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 2 / 15

Motivation and Contribution

I-DLV-sr: an ASP-based stream reasoner

• Support normal stratified ASP programs

• Provide a set of constructs for reason over streams

〈〈How many cars have passed in the last 20 seconds?〉〉

carPassing(C,N) :- car(C) count N in [20].
tot(T) :- #sum {N,C: carPassing(C,N)} = T.

Note: built-in atoms and aggregate literals are supported (ASP-Core-2)

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 3 / 15

Motivation and Contribution

I-DLV-sr: an ASP-based stream reasoner

• Support normal stratified ASP programs

• Provide a set of constructs for reason over streams

〈〈How many cars have passed in the last 20 seconds?〉〉

carPassing(C,N) :- car(C) count N in [20].
tot(T) :- #sum {N,C: carPassing(C,N)} = T.

Note: built-in atoms and aggregate literals are supported (ASP-Core-2)

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 3 / 15

Motivation and Contribution

I-DLV-sr: an ASP-based stream reasoner

• Support normal stratified ASP programs

• Provide a set of constructs for reason over streams

〈〈How many cars have passed in the last 20 seconds?〉〉

carPassing(C,N) :- car(C) count N in [20].
tot(T) :- #sum {N,C: carPassing(C,N)} = T.

Note: built-in atoms and aggregate literals are supported (ASP-Core-2)

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 3 / 15

I-DLV-sr

Input Language

Streaming Atoms

• a at least c in {d1, ...,dm}

• a always in {d1, ...,dm}

• a count t in {d1, ...,dm}

where a is an atom, c ∈N+, t is either ∈N+ or a variable, and {d1, . . . ,dm} ⊂N

Admitted Shortcuts

• a at least 1 in {d1, ...,dm} → a in {d1, ...,dm}

• not a at least c in {d1, ...,dm} → a at most c′ in {d1, ...,dm}
where c′ = c−1

• a at least 1 in {0} → a (a standard ASP atom!)

• {d1, ...,dm}→ [dm], if it is the set of natural numbers in the interval [0,dm]

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 4 / 15

I-DLV-sr

Input Language

Example 1: t = 15

b(5) at least 2 in {0,1,3}.
holds at the time point 15

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 4 / 15

I-DLV-sr

Input Language

Example 2: t = 15

b(5) always in [3].

does not hold at the time point 15

Remark:

b(5) always in [3]. is equivalent to b(5) always in {0,1,2,3}.

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 4 / 15

I-DLV-sr

Modelling—Underground Traffic Monitoring

Goal: build a monitoring system for the underground trains in the city of Milan

For each underground station

• Identify irregularity in train arrivals

• Send alerts in case of recurrent irregularities

• mild alert: from 2 to 5 irregularities

• severe alert: more than 5 irregularities

Traffic regularity: passengers expect to see a train stopping every 3–6 minutes

r1 : irregular :- train pass, train pass at least 1 in {1,2}.
r2 : irregular :- not train pass in [6].
r3 : #temp num anomalies(X) :- irregular count X in [30].
r4 : mild alert :- num anomalies(X), X>2, X<=5.
r5 : severe alert :- num anomalies(X), X>5.

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 5 / 15

I-DLV-sr

System Components

I-DLV-sr is based on a continuous cooperation between two components:

• A Java application built on top of Apache Flink (Flink) for processing

data stream

• I ncremental I -DLV (I 2-DLV) for performing complex reasoning tasks

Apache Flink

A distributed stream processor for efficiently managing data streams

• both batch and realtime stream data processing

• high throughput and low latency

I 2− DLV

An ASP grounder and a full-fledged deductive database system

• incremental ASP evaluation via overgrounding techniques

• service-oriented behavior

• given a fixed input program, it remains “listening” for input facts

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 6 / 15

I-DLV-sr

System Architecture

S
tr

e
a

m
 M

a
n

a
g

e
r

Program Input

Stream

Apache Flink

dataflow graph

Streaming literals

 mapping

Use

Use

I-DLV
2

S
u

b
p

ro
g

ra
m

M
a

n
a

g
e

r

MnM1

queueing

Rewritten Program

Execution

Manager

Apache Flink

Use

Answer

Stream

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 7 / 15

I-DLV-sr

A Practical Example

St
re

am
 M

an
ag

er

Input
Stream

Use

Use

I-DLV2

Su
bp

ro
gr

am
M

an
ag

er

Execution
Manager

Use

Apache Flink

a(X):-b(X) always in [2].
b(Y):-a(X) in [1],Y=X+1,c(Y).
d(X):-b(X) at least 2 in [4].
e(X,Y):-a(X),b(Y).

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 8 / 15

I-DLV-sr

A Practical Example

St
re

am
 M

an
ag

er

Input
Stream

Use

Use

I-DLV2

Su
bp

ro
gr

am
M

an
ag

er

Execution
Manager

Use

Apache Flink

a(X):-b(X) always in [2].
b(Y):-a(X) in [1],Y=X+1,c(Y).
d(X):-b(X) at least 2 in [4].
e(X,Y):-a(X),b(Y).

a(X):- b_aux1(X).
b(Y):- a_aux1(X),Y=X+1,c(Y).

d(X):- b_aux2(X).

e(X,Y):-a(X),b(Y).

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 8 / 15

I-DLV-sr

A Practical Example

St
re

am
 M

an
ag

er

Apache Flink
dataflow graph

Streaming literals
mapping

Use

Use

I-DLV2

Su
bp

ro
gr

am
M

an
ag

er

Execution
Manager

Use

Apache Flink

a(X):-b(X) always in [2].
b(Y):-a(X) in [1],Y=X+1,c(Y).
d(X):-b(X) at least 2 in [4].
e(X,Y):-a(X),b(Y).

M1
b(X) always in [2]
maps to b_aux1(X)

a in [1]
maps to a_aux1(X)

b(X)
at least 2

in [4]
⨝

b(X)
always
in [2]

a(X)
in [1]

⨝

M2
b(X) at least 2 in [4]
maps to b_aux2(X)

a(X):-b_aux1(X).
b(Y):-a_aux1(X),Y=X+1,c(Y).

d(X):-b_aux2(X).

e(X,Y):-a(X),b(Y).

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 8 / 15

I-DLV-sr

A Practical Example

St
re

am
 M

an
ag

er

Input
Stream

Apache Flink
dataflow graph

Streaming literals
mapping

Use

Use

I-DLV2

Su
bp

ro
gr

am
M

an
ag

er

Execution
Manager

Use

Apache Flink

a(X):-b(X) always in [2].
b(Y):-a(X) in [1],Y=X+1,c(Y).
d(X):-b(X) at least 2 in [4].
e(X,Y):-a(X),b(Y).

M1
b(X) always in [2]
maps to b_aux1(X)

a in [1]
maps to a_aux1(X)

b(X)
at least 2

in [4]
⨝

b(X)
always
in [2]

a(X)
in [1]

⨝

M2
b(X) at least 2 in [4]
maps to b_aux2(X)

Answer
Stream

queueing

a(X):-b_aux1(X).
b(Y):-a_aux1(X),Y=X+1,c(Y).

d(X):-b_aux2(X).

e(X,Y):-a(X),b(Y).

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 8 / 15

Experimental Evaluation

Description (1/2)

Tested Systems:

• I-DLV-sr

• Distributed-SR:

• the most recent LARS-based implementation

• supports a large set of features

• relies on a distributed architecture

Benchmarks:

• Content Caching

• Heavy Join

Performance:

• Total Time (s)

• Number of Accepted Requests

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 9 / 15

Experimental Evaluation

Content Caching

57

58

59

60

60

61

62

63

64

65

66

67

68

69

2 5 10 15 20 25 30 35 40 45 50

#A
cc

e
p

te
d

 R
e

q
u

e
st

s

To
ta

l T
im

e
 (

s)

Window Size

Nuovo

I-DLV-sr - Time Distributed-SR - Time

I-DLV-sr - Accepted Requests Distributed-SR - Accepted Requests

Window size: from 2s to 50s — Total number of requests: 60 (1 per second) —

Events per time point: 1

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 10 / 15

Experimental Evaluation

Content Caching

52

53

54

55

56

57

58

59

60

60

61

62

63

64

65

50 100 150 200 250 300 350 400 450 500

#A
cc

e
p

te
d

 R
e

q
u

e
st

s

To
ta

l T
im

e
 (

s)

#Events per Time Point

Nuovo

I-DLV-sr - Time Distributed-SR - Time
I-DLV-sr - Accepted Requests Distributed-SR - Accepted Requests

Window size: 5s — Total number of requests: 60 (1 per second) — Events per

time point: from 50 to 500

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 11 / 15

Experimental Evaluation

Heavy Join

Program

a(X,Y):-b(X,Z) in [w],c(Z,Y) in [w]

0

5

10

15

20

25

30

30

31

32

33

34

35

36

50 100 150 200 250 300 350 400 450 500

#A
cc

e
p

te
d

 R
e

q
u

e
st

s

To
ta

l T
im

e
 (

s)

#Events per Time Point

W2

I-DLV-sr - Time Distributed-SR - Time
I-DLV-sr - Accepted Request Distributed-SR - Accepted Request

Window size([w]): 2s

0

5

10

15

20

25

30

30

31

32

33

34

35

36

50 100 150 200 250 300 350 400 450 500

#A
cc

e
p

te
d

 R
e

q
u

e
st

s

To
ta

l T
im

e
 (

s)
#Events per Time Point

W20

I-DLV-sr - Time Distributed-SR - Time
I-DLV-sr - Accepted Requests Distributed-SR - Accepted Requests

Window size([w]): 20s

Total number of requests: 30 (1 per second) — Events per time point: from 50 to

500

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 12 / 15

Experimental Evaluation

Description (2/2)

Tested Systems:

• I-DLV-sr: relies on the incremental I 2-DLV system

• I-DLV-sr-non-incremental: relies on the non-incremental I -DLV

engine

Benchmark: Photo-voltaic System

Performance: Total Time (s)

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 13 / 15

Experimental Evaluation

I-DLV-sr vs I-DLV-sr-non-incremental

0

10

20

30

40

50

60

70

80

90

100

20x20nodes,
11970 links

22x22nodes,
17532 links

24x24nodes,
24840 links

26x26nodes,
34222 links

28x28nodes,
46040 links

30x30nodes,
60682 links

To
ta

l T
im

e
 (

s)

Grid Size

TOTAL TIME

I-DLV-sr I-DLV-sr-non-incremental

Period of incoming requests: 0.1s — Total number of requests: 60 (1 each 0.1

second) — Events per time point: vary with the grid size (eg. 900 for a 30x30 grid)

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 14 / 15

Conclusions and Future Works

I-DLV-sr: an ASP-based stream reasoner

• Tight interaction between I 2-DLV and a Flink-based application

• Easily extendable by design

• Good performance and scalability in complex domains

Future goal: move towards a more complete SR reasoner

• Add the support to additional language constructs

• Study proper means for the management of noise and incompleteness

• Investigate new real-world domains

CILC 2021 I-DLV-sr: a Stream Reasoning System based on I-DLV 15 / 15

Thank you!

