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Motivations and Contributions
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Stream Reasoning (SR)

Continuous application of inference techniques on highly dynamic data streams

• IoT, Smart Cities, Emergency Management...

• Sources (devices, sensors, etc) produce high volume of data at each moment

• Goals: insight, knowledge, support to decision-making process etc.

• A Stream Reasoner performs complex deduction tasks

• Use some Background Knowledge of the domain

• Use window-based processing to deal with infinite data streams

• exploits the temporal order of the events in the streams
• applies window-based evaluations:

• deal with (potentially) infinite stream (→snapshot)

• perform complex deduction tasks
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Motivations and Contributions

Answer Set Programming (ASP):

• Declarative paradigm for Knowledge Representation and Reasoning

• Successfully employed in both academy and industry

• Robust and efficient implementations

• A particularly attractive basis for SR

Goal: obtain a novel and reliable ASP-based stream reasoner, that:

• Inherits the highly declarative nature and ease of use from ASP;

• Can be easily extended with new constructs relevant for practical SR

scenarios;

• Efficiently scales over real-world application domains.
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Motivation and Contribution

I-DLV-sr: an ASP-based stream reasoner

• Support normal stratified ASP programs

• Provide a set of constructs for reason over streams

〈〈How many cars have passed in the last 20 seconds?〉〉

carPassing(C,N) :- car(C) count N in [20].
tot(T) :- #sum {N,C: carPassing(C,N)} = T.

Note: built-in atoms and aggregate literals are supported (ASP-Core-2)
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I-DLV-sr

Input Language

Streaming Atoms

• a at least c in {d1, ...,dm}

• a always in {d1, ...,dm}

• a count t in {d1, ...,dm}

where a is an atom, c ∈N+, t is either ∈N+ or a variable, and {d1, . . . ,dm} ⊂N

Admitted Shortcuts

• a at least 1 in {d1, ...,dm} → a in {d1, ...,dm}

• not a at least c in {d1, ...,dm} → a at most c′ in {d1, ...,dm}
where c′ = c−1

• a at least 1 in {0} → a (a standard ASP atom!)

• {d1, ...,dm}→ [dm], if it is the set of natural numbers in the interval [0,dm]
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I-DLV-sr

Input Language

Example 1: t = 15

b(5) at least 2 in {0,1,3}.
holds at the time point 15
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I-DLV-sr

Input Language

Example 2: t = 15

b(5) always in [3].

does not hold at the time point 15

Remark:

b(5) always in [3]. is equivalent to b(5) always in {0,1,2,3}.
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I-DLV-sr

Modelling—Underground Traffic Monitoring

Goal: build a monitoring system for the underground trains in the city of Milan

For each underground station

• Identify irregularity in train arrivals

• Send alerts in case of recurrent irregularities

• mild alert: from 2 to 5 irregularities

• severe alert: more than 5 irregularities

Traffic regularity: passengers expect to see a train stopping every 3–6 minutes

r1 : irregular :- train pass, train pass at least 1 in {1,2}.
r2 : irregular :- not train pass in [6].
r3 : #temp num anomalies(X) :- irregular count X in [30].
r4 : mild alert :- num anomalies(X), X>2, X<=5.
r5 : severe alert :- num anomalies(X), X>5.
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I-DLV-sr

System Components

I-DLV-sr is based on a continuous cooperation between two components:

• A Java application built on top of Apache Flink (Flink) for processing

data stream

• I ncremental I -DLV (I 2-DLV) for performing complex reasoning tasks

Apache Flink

A distributed stream processor for efficiently managing data streams

• both batch and realtime stream data processing

• high throughput and low latency

I 2− DLV

An ASP grounder and a full-fledged deductive database system

• incremental ASP evaluation via overgrounding techniques

• service-oriented behavior

• given a fixed input program, it remains “listening” for input facts
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I-DLV-sr

System Architecture
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I-DLV-sr

A Practical Example

St
re

am
 M

an
ag

er

Input
Stream

Use

Use

I-DLV2

Su
bp

ro
gr

am
M

an
ag

er

Execution
Manager

Use

Apache Flink

a(X):-b(X) always in [2].
b(Y):-a(X) in [1],Y=X+1,c(Y).
d(X):-b(X) at least 2 in [4].
e(X,Y):-a(X),b(Y).
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Experimental Evaluation

Description (1/2)

Tested Systems:

• I-DLV-sr

• Distributed-SR:

• the most recent LARS-based implementation

• supports a large set of features

• relies on a distributed architecture

Benchmarks:

• Content Caching

• Heavy Join

Performance:

• Total Time (s)

• Number of Accepted Requests
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Experimental Evaluation

Content Caching
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Experimental Evaluation

Content Caching
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Experimental Evaluation

Heavy Join

Program

a(X,Y):-b(X,Z) in [w],c(Z,Y) in [w]
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Experimental Evaluation

Description (2/2)

Tested Systems:

• I-DLV-sr: relies on the incremental I 2-DLV system

• I-DLV-sr-non-incremental: relies on the non-incremental I -DLV

engine

Benchmark: Photo-voltaic System

Performance: Total Time (s)
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Experimental Evaluation

I-DLV-sr vs I-DLV-sr-non-incremental
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Conclusions and Future Works

I-DLV-sr: an ASP-based stream reasoner

• Tight interaction between I 2-DLV and a Flink-based application

• Easily extendable by design

• Good performance and scalability in complex domains

Future goal: move towards a more complete SR reasoner

• Add the support to additional language constructs

• Study proper means for the management of noise and incompleteness

• Investigate new real-world domains
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