Towards Substructural Property-Based Testing
Alberto Momigliano
joint work with Marco Mantovani

DI, Universita degli Studi di Milano

CILC'21, September 9th, 2021

On the meta-theory of programming languages

® We study the meta-correctness of programming, e.g. (formal)
verification of the trustworthiness of the tools with which we
write programs:

from static analyzers to compilers, parsers, pretty-printers
down to run time systems.

® What can possibly go wrong?
Finding and Understanding Bugs in C Compilers, [Yang '11]:
“We created Csmith, a randomized test-case generation
tool [...] we reported more than 325 previously unknown
bugs to compiler developers. Every compiler we tested
was found to crash and also to silently generate wrong
code when presented with valid input.”

1/15

PL theory formalized

Programming language semanticists should be the obstetricians of
programming languages, not their coroners. (John C. Reynolds)

® Formal verification via proof assistants gives the most
guarantees and its doable, though labor-intensive

e See CompCert (compilers), seL4 (operative system), etc.

® Elegance is not optional: success of a formalization may
depend on the representation chosen.

2/15

Formalizing typing judgments

Mle: T

e What is ['? A (finite) function? A list/set/multiset?
® Any implementation of a typing context must support lookup
and lemmas such as:

Weakening If TFe:7and T C " then ['Fe:T.
Substitution If I x:7Fe:7 and T m: 7, then
Mt e[x/m]: 7'

® Since a typing system can have hundreds of rules, these proof
are conceptually easy but practically hard.

3/15

Solutions

1. The hammer: use a concrete representation and develop
libraries, tactics, automation to get it done
® The standard approach in HOL, Coq, ACL2 ...
® [ow level, labor-intensive, hard to share among systems
2. Internalize those notions in the logic: an object level context
is represented by a context in an intuitionistic meta logic:
® X1 :T1...X,:Tnis encoded as a set of atoms
Of(Xl, '_le) e Of(Xm I—T,,—I).

The:71="T"Fu of(Tel,"77)

® Now, properties such as weakening and substitution come for
free, since they hold once and for all for the meta-logic

® This idea has been successfully used in systems like Twelf,
Beluga, Abella etc.

4/15

Encoding state-based computations

Consider the execution of a command in a imperative
language:
okFcldo

Execution updates the state: seeing the state as an
intuitionistic context won't work because the logic is
monotonic.

Sure, we can reify the state into a data structure, but it's
back to the hammer thing.
Rather, we refine the logic linearly

We use linear logic to represent in a logical way stateful
computation (Linear Logic Programming) and to reason over
such computation from first principles (Linear Logic
Framework), see Lolli, Forum, LLF. ..

5/15

Linear Logic and the meta-theory of PL

Linearity plays a part in many PL phenomena, recently think
separation logic and session types

The promise: if you internalize the notion of state, formalizing
the meta-theory should be a breeze

Canonical example: Type soundness of ML with references
[Cervesato & Pfenning’02], proven without any technical
lemmas, as opposed to dozens (e.g., in Coq's Software
Foundations).

Alas, developing a linear proof environment from the ground

up takes effort: canonical forms, resource management,
unification etc.

® |n fact, there are none.

In the meantime, rather then verification, we could do some
validation, that is trying to find bugs.

6/15

Property-based testing

A light-weight validation approach merging two well known
ideas (QuickCheck [Claessen & Hughes ICFP’00]):

1. automatic generation of test data, against
2. executable program specifications.

The programmer specifies in a small logical DSL properties
that functions should satisfy.

PBT tries to falsify the properties by trying a large number of
(usually) randomly generated cases.

Good interaction with proof assistants (Isabelle/HOL, Coq):
testing not only in lieu of proving, but before proving.

7/15

PBT: the logical view

Specifications (think the operational semantics of a PL) are
logical theories: any fragment that has a focused proof-theory.

Trying to refute a property of the form
Vx: 1 [P(x) D Q(x)]
means searching for a focused proof of
Ax[(T(x) A P(x)) A =Q(x)

Intuition: the positive part 3x(7(x) A P(x)) (generation under
preconditions) is hard, the negative one =Q(x) is just blind
computation.

A counterexample is a t s.t. P(t) holds and Q(t) does not.
Rough bottom line: PBT as Prolog-like proof search.

8/15

What we have done

Take a fragment of linear logic that has a logic programming
interpretation — we use Miller & Hodas' Lolli, a linear logic
programming that conservatively extends (fo) AProlog.
Instrument it with a notion of certificate that will realize
various data generation strategies — we have used Miller’s
Foundational Proof Certificates architecture to implement
both random and exhaustive data generation.

Obtain PBT as focused search for counterexamples

We have carried out several case studies to assess the
feasibility of validation of the meta-theory of linear
specifications of PL-models via PBT ...

...and run some preliminary comparisons with “vanilla” PBT.

9/15

Case study: IMP and its compilation

IMP is a minimalist Turing-complete model of a (typed)
imperative PL.

We have encoded its static and dynamic (both small and big
step) semantics as linear logic programs, heavily relying on
continuation-passing style to ensure adequacy.

We have compiled IMP language in an assembly language,
which runs over a stack machine.

We have formulated and tested the meta-theory of IMP and
its compilation via PBT both on the bug-free model and via
some manual mutation analysis.

Sample property: equivalence of small and big step execution
of IMP:

if o cl o1 and (c,0) ~* (SKIP, 03) then o1 = 0>

We have compared its performances w.r.t. a traditional
state-passing encoding.

10/15

Operational semantics of IMP in Lolli

First, we encode the state as a linear context:

o = -|o, x—v
Co,x = vl = To var(x,"v7)

Next, consider the rule for executing an assignment:

ockFmlv
cbkx=mlod{x— v}

and its encoding in Lolli via logical continuations:

ceval (asn(X,E),K)
o- eval(E,V,
(var(X,_) x (var(X,V) -o K))).

where x,-0 are concrete syntax for lollipop and tensor.

11/15

Experimental

evaluation of PBT queries

—e— Vanilla

40 || —=— Linear

Linear vs state-passing testing of equivalence of big and small step

Size

operational semantics on a bug free model.

12/15

Conclusion

While linear logic is heavily used to represent PL models,
theorem proving technology is lacking behind.

We propose PBT in linear logic as a way to at least validate
those models.

We have used tools from proof-theory
(computations-as-deductions, focused proof search,
certificates) to give such a road map.

We have taken the first step with PBT'ing Lolli and validated
the approach with a mid-sized case study.

The empirical evaluation is not a washout, considering our
setup.

13/15

Future work

A less naive implementation

® w.r.t. resource management and/or better data structures
® Embed it into mainstream linear logic PL (which one?)

Adapt some of the sophisticated generation strategies in the
literature to search for deeper bugs.

Get out of the '90 and deal with richer substructural logics
(order, bunches, subexponentials, forward chaining . ..)

Apply PBT to more challenging case studies (with binders).

14 /15

Thanks for the attention

15/15

