
Towards Substructural Property-Based Testing

Alberto Momigliano
joint work with Marco Mantovani

DI, Università degli Studi di Milano

CILC’21, September 9th, 2021



On the meta-theory of programming languages

• We study the meta-correctness of programming, e.g. (formal)
verification of the trustworthiness of the tools with which we
write programs:

from static analyzers to compilers, parsers, pretty-printers
down to run time systems.

• What can possibly go wrong?
Finding and Understanding Bugs in C Compilers, [Yang ’11]:
“We created Csmith, a randomized test-case generation
tool [. . . ] we reported more than 325 previously unknown
bugs to compiler developers. Every compiler we tested
was found to crash and also to silently generate wrong
code when presented with valid input.”

1 / 15



PL theory formalized

Programming language semanticists should be the obstetricians of
programming languages, not their coroners. (John C. Reynolds)

• Formal verification via proof assistants gives the most
guarantees and its doable, though labor-intensive

• See CompCert (compilers), seL4 (operative system), etc.

• Elegance is not optional: success of a formalization may
depend on the representation chosen.

2 / 15



Formalizing typing judgments

Γ ` e : τ

• What is Γ? A (finite) function? A list/set/multiset?

• Any implementation of a typing context must support lookup
and lemmas such as:

Weakening If Γ ` e : τ and Γ ⊆ Γ′ then Γ′ ` e : τ .
Substitution If Γ, x : τ ` e : τ ′ and Γ ` m : τ , then

Γ ` e[x/m] : τ ′

• Since a typing system can have hundreds of rules, these proof
are conceptually easy but practically hard.

3 / 15



Solutions

1. The hammer: use a concrete representation and develop
libraries, tactics, automation to get it done
• The standard approach in HOL, Coq, ACL2 . . .
• Low level, labor-intensive, hard to share among systems

2. Internalize those notions in the logic: an object level context
is represented by a context in an intuitionistic meta logic:
• x1 : τ1 . . . xn : τn is encoded as a set of atoms

of (x1, pτ1q) . . . of (xn, pτnq).

pΓ ` e : τq = pΓq `Int of (peq, pτq)

• Now, properties such as weakening and substitution come for
free, since they hold once and for all for the meta-logic

• This idea has been successfully used in systems like Twelf,
Beluga, Abella etc.

4 / 15



Encoding state-based computations

• Consider the execution of a command in a imperative
language:

σ ` c ⇓ σ′

• Execution updates the state: seeing the state as an
intuitionistic context won’t work because the logic is
monotonic.

• Sure, we can reify the state into a data structure, but it’s
back to the hammer thing.

• Rather, we refine the logic linearly

• We use linear logic to represent in a logical way stateful
computation (Linear Logic Programming) and to reason over
such computation from first principles (Linear Logic
Framework), see Lolli, Forum, LLF. . .

5 / 15



Linear Logic and the meta-theory of PL

• Linearity plays a part in many PL phenomena, recently think
separation logic and session types

• The promise: if you internalize the notion of state, formalizing
the meta-theory should be a breeze

• Canonical example: Type soundness of ML with references
[Cervesato & Pfenning’02], proven without any technical
lemmas, as opposed to dozens (e.g., in Coq’s Software
Foundations).
• Alas, developing a linear proof environment from the ground

up takes effort: canonical forms, resource management,
unification etc.
• In fact, there are none.

• In the meantime, rather then verification, we could do some
validation, that is trying to find bugs.

6 / 15



Property-based testing

• A light-weight validation approach merging two well known
ideas (QuickCheck [Claessen & Hughes ICFP’00]):

1. automatic generation of test data, against
2. executable program specifications.

• The programmer specifies in a small logical DSL properties
that functions should satisfy.

• PBT tries to falsify the properties by trying a large number of
(usually) randomly generated cases.

• Good interaction with proof assistants (Isabelle/HOL, Coq):
testing not only in lieu of proving, but before proving.

7 / 15



PBT: the logical view

• Specifications (think the operational semantics of a PL) are
logical theories: any fragment that has a focused proof-theory.

• Trying to refute a property of the form

∀x : τ [P(x) ⊃ Q(x)]

means searching for a focused proof of

∃x [(τ(x) ∧ P(x)) ∧ ¬Q(x)

• Intuition: the positive part ∃x(τ(x) ∧ P(x)) (generation under
preconditions) is hard, the negative one ¬Q(x) is just blind
computation.

• A counterexample is a t s.t. P(t) holds and Q(t) does not.

• Rough bottom line: PBT as Prolog-like proof search.

8 / 15



What we have done

• Take a fragment of linear logic that has a logic programming
interpretation – we use Miller & Hodas’ Lolli, a linear logic
programming that conservatively extends (fo) λProlog.

• Instrument it with a notion of certificate that will realize
various data generation strategies – we have used Miller’s
Foundational Proof Certificates architecture to implement
both random and exhaustive data generation.

• Obtain PBT as focused search for counterexamples

• We have carried out several case studies to assess the
feasibility of validation of the meta-theory of linear
specifications of PL-models via PBT . . .

• . . . and run some preliminary comparisons with “vanilla” PBT.

9 / 15



Case study: IMP and its compilation
• IMP is a minimalist Turing-complete model of a (typed)

imperative PL.
• We have encoded its static and dynamic (both small and big

step) semantics as linear logic programs, heavily relying on
continuation-passing style to ensure adequacy.
• We have compiled IMP language in an assembly language,

which runs over a stack machine.
• We have formulated and tested the meta-theory of IMP and

its compilation via PBT both on the bug-free model and via
some manual mutation analysis.
Sample property: equivalence of small and big step execution
of IMP:

if σ ` c ⇓ σ1 and (c , σ) ∗ (SKIP, σ2) then σ1 ≈ σ2

• We have compared its performances w.r.t. a traditional
state-passing encoding.

10 / 15



Operational semantics of IMP in Lolli

• First, we encode the state as a linear context:

σ ::= · | σ, x 7→ v
pσ, x 7→ vq = pσq, var(x , pvq)

• Next, consider the rule for executing an assignment:

σ ` m ⇓ v

σ ` x := m ⇓ σ ⊕ {x 7→ v}

• and its encoding in Lolli via logical continuations:

ceval(asn(X,E),K)

o- eval(E,V,

(var(X,_) x (var(X,V) -o K))).

where x,-o are concrete syntax for lollipop and tensor.

11 / 15



Experimental evaluation of PBT queries

4 5 6 7

0

20

40

Size

T
im

e
(s

ec
)

Vanilla
Linear

Linear vs state-passing testing of equivalence of big and small step
operational semantics on a bug free model.

12 / 15



Conclusion

• While linear logic is heavily used to represent PL models,
theorem proving technology is lacking behind.

• We propose PBT in linear logic as a way to at least validate
those models.

• We have used tools from proof-theory
(computations-as-deductions, focused proof search,
certificates) to give such a road map.

• We have taken the first step with PBT’ing Lolli and validated
the approach with a mid-sized case study.

• The empirical evaluation is not a washout, considering our
setup.

13 / 15



Future work

• A less naive implementation
• w.r.t. resource management and/or better data structures
• Embed it into mainstream linear logic PL (which one?)

• Adapt some of the sophisticated generation strategies in the
literature to search for deeper bugs.

• Get out of the ’90 and deal with richer substructural logics
(order, bunches, subexponentials, forward chaining . . . )

• Apply PBT to more challenging case studies (with binders).

14 / 15



Thanks for the attention

15 / 15


