
Answer set computation of negative two-literal
programs based on graph neural networks

Preliminary results

Antonio Ielo Francesco Ricca

Università della Calabria

CILC 2021, 8 September

Introduction

• Neural combinatorial optimization: deep learning applied to
combinatorial optimization

• Examples: (approximate) end-to-end solvers, branching
heuristics

• Graph coloring (GNN-COL), SAT (NeuroSAT, NeuroCore),
binary CSP (RUNCSP)

• What about Answer Set Programming?

Negative two-literal programs (N2LPs)

• Programs with rules of the form α← ¬β.

Properties
• All normal logic programs can be rewritten as equivalent

N2LPs.
• Computing answer sets for N2LPs is an NP-complete problem.
• Co-kernels of G (P) are answer sets of P
• Random N2LPs exhibit easy-hard-easy pattern (Namasivayam,

Truszczyński)

Figure: Probability P has an answer
set as function of rule density for
N2LPs with 150 atoms

Message passing graph neural networks

Let G (V ,E) be a (directed) graph. A (message passing) graph
neural network models a function V 7→ Rk by performing several
message passing rounds.

• Neighbouring nodes exchange messages generated by a
function M : Rk × Rk 7→ Rk .

• Each node aggregates, combines incoming messages via a
function C : {{Rk}} 7→ Rk

• Each node updates its own embedding based on the incoming
messages, via a function U : Rk × Rk 7→ Rk .

• The network ”output” is a function R : Rk 7→ Rd .

Message passing graph neural networks

A message passing round consists the following computation (node
equations):

h(v)i+1 = U(h(v)i ,C ({{M(h(w)i , h(v)i) : (w , v) ∈ E}}))

If (M,U,R,C) are differentiable functions (e.g. feedforward neural
networks), a sequence of message passing rounds is differentiable
and we can train the network with standard deep learning
optimization techniques.

RUNCSP (Toenschoff et al, 2020)

RUNCSP is an architecture that approximately solves binary
MAX-CSP problems, performing a node classification task.
Considering single-predicate CSPs, we can simplify it to a message
passing neural network where:

• M is a linear function

• R is a linear function composed with a sigmoid non linearity

• U is a recurrent neural network (LSTM)

• C the mean of incoming messages

• Successfully applied to SAT, MIS, 3COL, MAX-2SAT

RUNCSP (Toenschoff et al, 2020)

• Encode a problem instance as a graph (nodes as variables,
edges as constraints)

• Use the GNN to produce a soft assignment α : V 7→ [0, 1]|C |

• Minimize a loss function Lα that penalizes violated constraints

• Decode α(v1), ..., α(vn) to obtain a ”candidate solution” to
the problem instance

Tweaking RUNCSP for N2LPs

• Encode a N2LP P with a graph G (P)

• Use the GNN to produce a soft assignment α : A 7→ [0, 1],
where α(a) represents the probability a belongs to the
candidate answer set.

• Compute S : A 7→ [0, 1], max-probability atom a is supported

• Minimize Lα,S that penalizes violated constraints (and takes
into account atom supportedness).

• Decode α(a1) · S(a1), ..., α(vn) · S(an) to obtain a candidate
answer set for P.

Addressing supportedness of atoms

• It is possible to compute P(a is supported|α), not effective in
practice. We compute instead the maximum probability of a
being supported by a single rule, which we denote by S(a).

• Each node communicates 1−α(v) (probability of not being in
the answer set), nodes aggregate incoming messages by max.

• We formulate loss function in terms of α′(v) = α(v) · S(v)
rather than α(v) alone in order to enforce supportedness of
atoms.

Lα,S =
1

n

∑
(b←¬a)∈P

− log 1− (1− α′(a))(1− α′(b))

Training and evaluation

• Trained on random stream of Erdos-Renyi graphs 20-50
nodes, density ranging from 2.0 to 5.0

• Testing on random stream of graphs 150 nodes, density
ranging from 2.0 to 9.0 (accuracy, F-score)

• Testing on random stream of graphs 150 nodes, 600 rules
(choices distribution, peak of the hard phase)

Results

Results

Results

Conclusion

• ML-wise: better than random (+), some degree of
generalization (+), degrades quickly as programs are more
dense (-)

• Solver-wise: positively affects coherent programs’ choice
distribution (+), negatively affects incoherent programs’
choice distribution (-), net effect is slightly worse than vanilla
(-)

Thanks for your attention!

	Negative two-literal programs
	Graph neural networks
	Results

