for Smart Environments with LPaaS

Giuseppe Bisicchia, Stefano Forti and Antonio Brogi
giuseppe.bisicchia@outlook.it

™~ Service-oriented, Cloud and Fog Computing Research Group

SOCC Department of Computer Science

11_|'° University of Pisa, Italy

Smart Environments

imin) E!';gii @-’ Klgt @
: TR TR

@0 88

el e

ELE 8 &

loT-based
Smart
Environments

Smart City

gy g Smart Industry
T

' S ¥

Smart Home

Smart Grid

N

Motivating Scenario

Motivating Scenario

Motivating Scenario

Motivating Scenario

Open Questions

Three types of conflicts can arise:

* [User-User] How to mediate all users’
preferences to satisfy them in the best
possible way?

* [User-Admin] How to achieve goals
set by the Sys. Admin. (e.qg. energy
savings)?

 [loT-loT] How to reach a mediated
target state by suitably settings the
available actuators?

Our Proposal

A declarative framework -- and its prototype Solomon --
to specify customisable mediation policies for reconciling
contrasting goals and actuator settings in smart
environments

- By reasoning on a model of the available loT infrastructure and on
(possibly contrasting) goals

- Specifying ad-hoc mediation policies for User-User, User-Admin and
loT-1oT conflicts

Smart Environment

Our
Prototype

policies

goals

User Admin

Our declarative methodology has been prototyped in Prolog and offered as-a-service
through the LPaa$S paradigm. The code is open-source and available at:
https://github.com/di-unipi-socc/Solomon

https://github.com/di-unipi-socc/Solomon

A Simple Smart Environment

A Simple Smart Environment

propertyType(light).

A Simple Smart Environment

propertyType(light).

actuator(mainLamp,light).

A Simple Smart Environment

propertyType(light).

actuator(mainLamp,light).

sensor(brightness, light).

sensorValue(brightness, 990).

A Simple Smart Environment

propertyType(light).

actuator(mainLamp,light).

sensor(brightness, light).

sensorValue(brightness, 990).

zone(room2, defaultPolicy).

propertyInstance(room2, roomLight, light,
[mainLamp], [brightness]).

A Simple Smart Environment

propertyType(light).

actuator(mainLamp,light).

sensor(brightness, light).

sensorValue(brightness, 990).

zone(room2, defaultPolicy).

propertyInstance(room2, roomLight, light,
[mainLamp], [brightness]).

user(userC, [room2]).

A Simple Smart Environment

propertyType(light).

actuator(mainLamp,light).

sensor(brightness, light).

sensorValue(brightness, 990).

zone(room2, defaultPolicy).

propertyInstance(room2, roomLight, light,
[mainLamp], [brightness]).

user(userC, [room2]).

set(userC, room2, roomLight, 15).

Solomon Functioning

1. Collecting all user requests
2. Mediating the requests
3. Determining actions for individual loT actuators

react (Requests, MediatedRequests, Actions) :-
getRequests(Requests, ValidRequests),
mediateRequests(ValidRequests, MediatedRequests), % Defined by SysAdmin
validMediation(MediatedRequests),
associateActions (MediatedRequests, Actions), % Defined by SyAdmin

validActions(Actions).

Solomon also offers a library of standard predicates to implement mediation policies
(e.g. average, consensus, min/max)

Motivating Scenario: Mediating Requests 80
D

Motivating Scenario: Mediating Requests 80
D

O

Shared Room East

S
$”

Room 1 East

=

Room 3 East

&

d sl

2

L™=]

O]

L=

A More Complex Scenario: Smart Building

Room 2 East

\

BE

Room 4 East

2

O

1.
-e-

[]
.:,'.

i eSS

Within 18°C and 22°C in Autumn and Winter

Within 24°C and 28°C in Spring and Summer

Cos

O

Room 1 West

=

ISP

®

Y

Room 3 West

S

(o

Room 2 West

e

[fg?

®)

Room 4 West

@

allll

Y

1S3/\\ WOO0Y paleys

9

Describing the Smart Building

zone(room E 1, east).
zone(room E 2, east).
zone(room E 3, east).

zone(room E 4, east).

zone(commonRoom E, east).

zone(room W 1, west).
zone(room W 2, west).
zone(room W 3, west).

zone(room W 4, west).

zone (commonRoom W, west).

Shared Room East

Room 1 East

Room 3 East

Room 2 East

Room 4 East

=

Room 1 West

Room 3 West

Room 2 West

Room 4 West

159\ WOOY paleys

Describing the Smart Building

Room 1 East Room 3 East Room 2 East Room 4 East

= B

Shared Room East
1S3\ WooyY paJeys

e 56

Room 1 West Room 3 West Room 2 West Room 4 West

propertyInstance(room E 1,roomTemp,temp,[acOdd E,heater],[tempOdd E]).

propertyInstance(room E 1,roomLight,light,[biglightRoom E 1,smalllightRoom E 1],
[lightRoom E 1]).

propertyInstance(room E 3,roomTemp,temp,[acOdd E],[tempOdd E]).

propertyInstance(room E 3,roomLight,light,[biglightRoom E 3,smalllightRoom E 3],[lightRoom E
3]).

mediateRequests/2

mediateRequests(Requests, Mediated) :-

groupPerPI(Requests, NewRequests), mediateRequest(NewRequests, Mediated).

mediateRequest([],[]).
mediateRequest([(Z,PI,Ls)|Reqs], [Mediated|OtherMediatedReqs]) :-
mediatePI(Z,PI,Ls,Mediated), mediateRequest(Reqgs, OtherMediatedReqgs).

mediatePI(, , [], undef).

mediatePI(Z, PI, Ls, (Z, PI, Avg)) :-
findall(V, member((V,),Ls), Values), avg(Values,AvgTmp),
zone(Z, Policy), propertyInstance(Z, PI, Prop, _, [Sensor]),
sensorValue(Sensor, SensedValue),

findValue(Policy, Prop, SensedValue, AvgTmp, Avg).

mediateRequests/?2

findvValue(_, temp, _, TempValue, Value) :-
season(S),

(((S = winter ; S = autumn), (TempValue > 22, Value is 22; TempValue < 18, Value is 18;
Value is TempValue));

((S = summer ; S = spring), (TempValue > 28, Value is 28; TempValue < 24, Value is 24;
Value is TempValue))).

findValue(east, light, , LightValue, Value) :-
(LightValue > 255, Value is 255; LightValue < 100, Value is 100; Value is LightValue).

findValue(west, light, Brightness, LightValue, Value) :-

((Brightness > 100, (LightValue > 255, Value is 255; LightValue < 100, Value is 100;
Value is LightValue));

(LightvValue > 255, Value is 255; LightValue < 180, Value is 180; Value is LightValue)).

associateActions/2

associateActions(Requests, ExecutableActions) :-

actionsFor(Requests, Actions), setActuators(Actions, ExecutableActions).

actionsFor([],[]).
actionsFor([undef|Reqgs], Actions) :- actionsFor(Reqs, Actions).
actionsFor([(Z, PI, V)|Reqgs], Actions) :-
propertyInstance(Z, PI, _, ActuatorList, SensorList),
selectActionsForPI(Z, PI, V, ActuatorlList, SensorlList, Actionsl),

actionsFor(Reqs, Actions2), append(Actionsl, Actions2, Actions).

selectActionsForPI(_, , V, ActuatorList, _, Actions) :-
length(ActuatorList, ActuatorsNumber),
triggerAllActuators(V, ActuatorsNumber, ActuatorList, Actions).

setActuators(Actions, ExecutableActions) :- setActuatorsWithMax(Actions, -inf,inf,
ExecutableActions).

associateActions/2

triggerAllActuators(, , [1, [1).

triggerAllActuators(V, ActuatorsNumber, [Actuator|ActuatorList],
[(Actuator,VNew) |Actions]) :-

dif(Actuator, heater),
VNew is V/ActuatorsNumber,

triggerAllActuators(V, ActuatorsNumber, ActuatorlList, Actions).

triggerAllActuators(V, ActuatorsNumber, [heater|ActuatorList],
[(heater,100) |Actions]) :-

V > 0, triggerAllActuators(V, ActuatorsNumber, ActuatorList, Actions).

triggerAllActuators(V, ActuatorsNumber, [heater|ActuatorList],
[(heater,0) |Actions]) :-

V =< 0, triggerAllActuators(V, ActuatorsNumber, ActuatorlList, Actions).

A Working Example: Determing Actions -« «

season(winter). sensorValue(lightCommonRoom W, 160).
user(ul, [room E 1,commonRoom_ E,commonRoom W]). user(u2, [room_E 2,commonRoom E,commonRoom W]).
user(u3, [room E_3,commonRoom_ E,commonRoom W]). user(u4, [room E_4,commonRoom_ E,commonRoom W]).

user(u8, [room W 4,commonRoom_ E,commonRoom W]).

set(ul, room E 1, roomLight, 9). set(u2, commonRoom W, commonRoomLight, 255).
set(ul, room E 1, roomTemp, 18). set(u2, commonRoom W, commonRoomTemp, 23).
set(u3, room E 3, roomTemp, 28). set(u8, commonRoom W, commonRoomLight, 255).
set(u4, room E 2, roomLight, 9). set(u8, commonRoom W, commonRoomTemp, 18).

set(ud4, room E 2, roomTemp, 18).

MediatedRequest = [(room E 1,roomLight,100), (room E 1,roomTemp,18),
(room_E_3,roomTemp,22), (commonRoom_ W, commonRoomLight,255), (commonRoom_W,commonRoomTemp,20.5)].

Actions = [(acCommonRoom W, 20.5), (biglightCommonRoom W 1, 127.5),(biglightCommonRoom W 2,
127.5), (acOdd E, 22), (heater, 100), (biglightRoom E 1, 50), (smalllightRoom E 1, 50)].

Conclusions

It considers and mediates among Being open-source and enabling
them goals, from all (human and customisation from its end-users.
machine) stakeholders involved in a Code and Docs at:
Smart Environment, to reach a https://github.com/di-unipi-
target state socc/Solomon
As it is Prolog code: concise (around As it features a well-defined REST
50 sloc) and featuring a good level API based on LPaa$, it enables
of abstraction and flexibility to interoperability with other systems
accommodate new emerging needs through remote interactions
of Smart Environments

declarative as-a-Service

https://github.com/di-unipi-socc/Solomon

Future Work

- up In
@ up Im
_jmy

New Policies Answer Set Programming Web of Things

by also proposing a set of
modular building blocks

to exploit Solomon in

to allow processing more expressive policies :
actual smart environments

for Smart Environments with LPaaS

Giuseppe Bisicchia, Stefano Forti and Antonio Brogi
giuseppe.bisicchia@outlook.it

™~ Service-oriented, Cloud and Fog Computing Research Group

SOCC Department of Computer Science

11_|'° University of Pisa, Italy

