

th
20 WORKSHOP "FROM OBJECTS TO AGENTS" (WOA 2019)

Parma, June 26 -28 , 2019

Towards a Logic-based Approach for Multi-modal Fusion and Decision Making during Motor Rehabilitation Sessions

F. A. D'Asaro

CRdC Tecnologie, Univ. di Napoli Federico II

A. Origlia

URBANECO, Univ. di Napoli Federico II

S. Rossi

DIETI, Univ. di Napoli Federico II

Introduction

- AVATEA: Advanced Virtual Adaptive Technologies e-hEAlth
 - Aim: to develop an intelligent system for the rehabilitation of children
 - Development Coordination Disorders (DCD)

- Integration of several components:
 - Adjustable seat
 - Sensors (pressure, motion, cameras, EEG ...)
 - Visual interface (games)

Challenges

- Need for developing personalised therapeutic scenarios
 - Adaptation techniques typically only focus on maximising effort during the rehabilitation session

- It is necessary to take into account parameters such as:
 - the individual subject's capabilities
 - the child's emotional response (engagement)

Challenges

AVATEA requires facing a number of challenges, including:

- Deal with sensor data from different sources
 - (cameras, microphones, pressure sensors, EEG, ...)
- Machine learning for data processing
 - Detect the user's level of engagement
 - Profile and track the user's progress
 - Support the therapists by providing them with detailed reports
- Provide an adaptive rehabilitation and re-engagement strategy
 - the rehabilitation procedure must remain safe and informative

AVATEA Solution

- Handling data coming from different sources requires a complex system able to integrate them and take decisions accordingly,
 - a multimodal system
- Logic-based systems
 - are progressively becoming able to handle uncertain knowledge
 - offer a transparent way to look at the information in AI systems
 - To reconstruct the rationale behind the decisions taken
 - To provide explanations in human-readable terms

The AVATEA Architecture

Sensors

The AVATEA Architecture

Games

Input Trackers

TRACKERS

Posture Tracker

Head Pose Tracker

The AVATEA Architecture

Games

The AVATEA Architecture

Al Engine

EPEC: Overview

For this task we use **EPEC**, a modern logical probabilistic logicprogramming language for representing events occurring along a timeline, reason about their effects, and plan to achieve a goal:

EPEC: Overview

For this task we use **EPEC**, a modern logical probabilistic logicprogramming language for representing events occurring along a timeline, reason about their effects, and plan to achieve a goal:

cutScene

notMoving

lowAttention

eyesNotFollowing

time

```
notMoving causes-one-of {({¬Engangement},0.3), (Ø,0.7)} eyesNotFollowing causes-one-of {({¬Engangement},0.5), (Ø,0.5)} notMoving occurs-at Friday, 21-Jun-2019 14:07:52 GMT+0000 eyesNotFollowing occurs-at Friday, 21-Jun-2019 14:09:58 GMT+0000
```

∀I, cutScene performed-at I if-believes (Engangement,[0,threshold])

EPEC: Language

For completeness, we give a full description of EPEC's language and syntax. EPEC's language consists of:

A finite set *<u>F</u> of <i>fluents*

A finite set <u>I</u> of *instants*, ordered with a least element

A finite set $\underline{A} = \underline{A}_e \cup \underline{A}_a$ of (environmental, agent) actions

A finite set **V** of values

A *literal* is an expression of the form X=V, a *formula* is a combination of literals using connectives, a (*partial*) *fluent state* is a set of literals that mention each (resp. some) fluent exactly once, and an *outcome* is a pair (S,P) for some partial fluent state S and real value P in [0,1].

EPEC: Syntax

<u>v-propositions</u>: F takes-values $\{V_1, ..., V_n\}$

<u>i-propositions</u>: **initially-one-of** $\{S_1, ..., S_n\}$

<u>c-propositions</u>: θ causes-one-of $\{O_1, ..., O_n\}$

o-propositions: A_{ρ} occurs-at / with-prob P if-holds θ

<u>p-propositions</u>: A_a **performed-at** / **with-prob** P **if-believes** (θ, \dot{P})

s-propositions: θ senses F with-accuracies M

where F is a fluent, V_i is a value, S_i is a state, θ is a formula, O_i is an outcome, A_e , A_a are (environmental, agent) actions, P is a real value in [0,1], \dot{P} is a sub-interval of [0,1], I is an instant, I is a matrix.

EPEC: Implementation

There are several existing implementations of EPEC, which can reason **offline** about a knowledge base consisting of sets of (v-, i-, c-, o-, p-, s-) propositions.

These implementations are:

- **PEC-ASP**: for exact computation of probabilities (non-epistemic fragment of EPEC)
- **PEC-Anglican**: for approximate computation of probabilities (non epistemic fragment of EPEC, uses MCMC techniques)
- EPEC-ASP: for exact computation of probabilities (full EPEC)

EPEC

In our architecture, all the modalities are **jointly** represented on EPEC's timeline in the form of **events**. These are then reasoned about, together with the causal rules and conditional plans, to infer high-level facts about the environment (e.g., the current level of engagement) and possibly trigger other events (e.g., play a cut scene).

EPEC

Notice that if the classifiers are noisy with a known degree of uncertainty, EPEC also supports the specification of confusion matrices associated with them, e.g.:

EEG senses Engagement with-accuracies $\begin{pmatrix} 0.15 & 0.85 \\ 0.99 & 0.01 \end{pmatrix}$

First Demo

Explanation in EPEC

EPEC can be used to assist the therapists by providing **explanations** (e.g., for inferences and the decisions taken)

For instance, in the previous example it is possible to (automatically) provide an explanation for triggering *cutScene*:

"Given the belief that the child was initially fully engaged, and that s/he wasn't moving at time 1, his/her attention was low at time 3 and wasn't following the target at time 4, I have worked out that his/her level of engagement was 0.1 at time 5, which is below the threshold for triggering a cutScene action."

Conclusions and future work

This work provides an overview of the challenges posed by the AVATEA project and how we are going to tackle them using a logic-based approach to multimodal fusion.

- Since the existing implementations of EPEC work **offline**, we are working on an **online** implementation which can receive events (from trackers and classifiers) and take decisions at **runtime**.
- Another important challenge is to "extract" domain knowledge from the experts in the field, and translate it to EPEC domains.
- Finally, translating explanations in EPEC to natural language would also be helpful to therapists and is planned for future work.

