
A Peer-to-Peer Notification System for Distributed
Online Social Networks

Michele Amoretti, Lorenzo Gandolfi, Michele Tomaiuolo
Department of Engineering and Architecture, University of Parma

Contacts:
michele.amoretti@unipr.it

michele.tomaiuolo@unipr.it

 Parma, 28/6/2019

mailto:michele.amoretti@unipr.it
mailto:michele.tomaiuolo@unipr.it

Summary

● Introduction
● Distributed Social Architectures
● Proposed Algorithms
● Simulations
● Conclusion and Future Work

Distributed Social Architectures

● Popular social networking platforms
○ Centralized: algorithms (recommendation

etc.) have full access to data
○ Web based: easy access, across devices

● But... there are some “buts”
○ Privacy leaks and mass surveillance
○ Social silos, walled gardens
○ Arbitrary censorship
○ Availability and reachability during crisis
○ High costs, data exploitation, ads

Distributed platforms

● Federated systems
○ Diaspora, StatusNet
○ Users can suffer attacks to popular pods

● Custom peer-to-peer systems
○ Freenet, PeerSoN, LotusNet, Safebook, Persona, Life Social
○ In some cases, a single node can still host various users

● Lack of...
○ Systems based on popular P2P protocols
○ Open source, workable implementations

Design of Blogracy

● Modular design, orthogonal solutions for different aspects
○ Web application for social data
○ P2P file sharing
○ Async messaging

● Available on Github
● http://blogracy.net/

http://blogracy.net/

Basic formats and protocols

● OpenSocial
○ W3C standard for social activities, based on JSON
○ Recent social activities saved in a local file
○ File includes profile information, and a list of followees

● BitTorrent, file sharing
○ P2P, fully distributed

● Kademlia, Distributed Hash Table
○ All nodes maintain information about file availability
○ Without servers/trackers

Identity and security

● Key based identity
○ Each user is identified by his/her public key

● Each user has an associated file
○ Social db: profile, followees and activities
○ DHT for mapping: user_id → file_hash

● Signed activities for integrity
○ JSON Web signature

● End to end encryption for confidentiality
○ Attribute-Based Encryption

Resource sharing

Updating the followees’ feeds

Implementation over BitTorrent

● Plugin for Vuze (fka Azureus)
a. Java-based BitTorrent client
b. Object-oriented, extensible

● Web application
a. Embedded Jetty web server

● Communications through JMS
a. ActiveMQ, WebSockets
b. Instant messages & updates exchanged with the browser

● Publish/subscribe channels based on Vuze DHT

Node churn and polling

● In P2P, some users connect and others disconnect, continuously
● But in BitTorrent, downloading a resource corresponds to sharing it

○ If a user has enough followers, they contribute to make his/her
messages available

○ Also when the original message source is offline
● Ok with 120 followers, 10% stable nodes → 5 min delay

○ Stable nodes connected for 8 hours a day
○ Others connected occasionally (3 times a day, 15 min. total)

● Otherwise, shared trusted always-on nodes for new users

Simulations of node churn

● Delays grow exponentially when stable nodes or followers decrease

Node churn and polling

● Polling: unnecessary delays and traffic
○ Pushing: not always appropriate; node churn in P2P
○ Need to strike a balance between polling/pushing mechanisms

● Blogracy: pushing mechanism based on DHT
○ Publish/subscribe on multiple channels
○ Potentially, a channel for each user
○ Users interested in a channel, share a torrent
○ The shared hash is obtained by the name of the channel
○ Messages are sent directly to all online subscribers

Pushing update notifications

● Testing: 20 nodes over the PlanetLab
testbed, constantly online

● All nodes participate to a common
publish/subscribe channel

● Figure: cumulative distribution of the delay (millis) of direct notification
○ 90% of messages are received in (less than) half a minute

Spanning tree

● Push notifications are effective, for online nodes
● But a node cannot send direct notifications to all online followers
● The mechanism needs to scale to thousands of nodes and more
● If nodes are organized in a spanning tree (like IRC servers), work can

be distributed

Proposed Algorithms

● Group Join (i.e., how to select the entry point)
○ root strategy:

■ find the node that is the root of the tree
■ send a “join” message to that node
■ may lead to a more balanced tree

○ first strategy:
■ find any node belonging to the tree
■ send a “join” message to that node
■ reduced workload on the root node
■ may lead to a less balanced tree

Proposed Algorithms

● Connection (i.e., how to become part of the spanning tree)

Proposed Algorithms

● Tree Reconstruction
○ subtree breakout algorithm

● n1 fails
● n2 .. n6 try to reconnect to the tree

autonomously

Proposed Algorithms

● Tree Reconstruction
○ subtree preservation algorithm

● n1 fails
● n2 preserves its subtree while looking for a

new parent node
● n3 (isolated) tries to reconnect to the tree

autonomously

Proposed Algorithms

● Tree Reconstruction
○ subtree breakout algorithm

● recursive election according to one of
○ XOR distance
○ lifetime

Simulations

● DEUS: a general purpose tool for complex system simulation
● Simple Java API for implementing nodes, events, processes
● Project homepage: https://github.com/dsg-unipr/deus/
● Main papers:

M. Amoretti, M. Agosti, F. Zanichelli, DEUS: a Discrete Event Universal
Simulator, 2nd ICST/ACM International Conference on Simulation Tools and
Techniques (SIMUTools 2009), Roma, Italy

M. Amoretti, M. Picone, F. Zanichelli, G. Ferrari, Simulating Mobile and
Distributed Systems with DEUS and ns-3, International Conference on High
Performance Computing and Simulation 2013, Helsinki, Finland

Simulations

The tree construction algorithms are compared in terms of

● workload distribution on network nodes
● quickness
● communication robustness

by means of the following performance indicators:

● number of control messages ν
● tree depth δ
● propagation delay π

Simulations

● Group Join: δ (tree depth) and ν (control messages) for different values of
k (node degree)

first is better than root (from now on, we assume first)

Simulations

● Propagation delay: reduced gains for k>8 (node degree)

Simulations

● Tree reconstruction, for the subtree breakout strategy
● First row: δ (tree depth) and ν (control messages) before nodes fail

Simulations

● Tree reconstruction, for the subtree preservation strategy
● First row: δ (tree depth) and ν (control messages) before nodes fail

Simulations

● Tree reconstruction, for the recursive election strategy
● First row: δ (tree depth) and ν (control messages) before nodes fail

Conclusion and Future Work

● We designed and compared different strategies for creating a
spanning tree over a generic P2P network of the structured type

● The adopted decentralized approach is motivated by the need for
privacy

● Tree robustness is guaranteed by
○ first-based group join
○ recursive election for tree reconstruction

● We plan to implement the proposed strategies in the Blogracy
platform, and to introduce adaptive strategies for parameter tuning

